Effects of wildfire on long-term soil CO2 concentration: implications for karst processes

Abstract

Wildfires reduce soil CO2 concentration by destroying vegetation and soil-dwelling microbes, thus reducing soil respiration. Post-fire vegetation recovery is primarily determined by vegetation growth forms and modes of regeneration, whereas long-term recovery of soil microbes is largely dependent on vegetation rehabilitation. With previous research focussing on post-fire respiration recovery in the context of CO2 flux between the soil and atmosphere, there is a lack of studies measuring the long-term response of soil CO2 concentration in karst environments. Hence, this study aimed to quantify whether soil CO2 concentration was reduced 5 and 10 years after fires in a karst environment and to consider the implications for karst dissolution processes and speleothem growth rate. Paired sites with burnt and unburnt soil were compared with regards to soil CO2 concentration, soil temperature and soil moisture. Samples were taken from a grassland community and woodland community burnt 5 years prior and a forest community burnt 10 years prior. The results showed that soil respiration was depressed in the burnt site relative to the unburnt control in the woodland 5 years post-fire. A vegetation survey indicated that there substantially less biomass in the burnt site relative to the unburnt site. In the forest site 10 years post-fire there was no significant difference in soil CO2 concentration or vegetation between the burnt and control. This demonstrates that soil CO2 concentration takes >5 years to recover to pre-fire levels in woodlands and <10 years in subalpine forests and is determined by vegetation recovery. This long-term reduction in soil CO2 concentration caused by fire has the potential to affect karst subsurface processes governed by soil CO2 which lead to incorrect interpretation of speleothem proxy climate records.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A Balkema, Rotterdam

    Google Scholar 

  2. Armstrong R, Turner KD, McDougall KL et al (2013) Plant communities of the south eastern highlands and Australian Alps within the Murrumbidgee catchment of New South Wales. Cunninghamia 13:125–265

    Article  Google Scholar 

  3. Baker A, Smart PL, Ford DC (1993) Northwest European palaeoclimate as indicated by growth frequency variations of secondary calcite deposits. Palaeogeogr Palaeoclimatol Palaeoecol 100:291–301. doi:10.1016/0031-0182(93)90059-R

    Article  Google Scholar 

  4. Bárcenas-Moreno G, Bååth E (2009) Bacterial and fungal growth in soil heated at different temperatures to simulate a range of fire intensities. Soil Biol Biochem 41:2517–2526. doi:10.1016/j.soilbio.2009.09.010

    Article  Google Scholar 

  5. Bradstock RA, Auld T (1995) Soil temperatures during experimental bushfires in relation to fire intensity: consequences for legume germination and fire management in south-eastern Australia. J Appl Ecol 32:76–84

    Article  Google Scholar 

  6. Brook G, Folkoff ME, Box E (1983) World model of soil carbon dioxide. Earth Surf Process Landforms 8:79–88

    Article  Google Scholar 

  7. Brook GA, Sheen SW, Rafter MA et al (1999) A high-resolution proxy record of rainfall and ENSO since AD 1550 from layering in stalagmites from Anjohibe Cave, Madagascar. Holocene 9:695–705. doi:10.1191/095968399677907790

    Article  Google Scholar 

  8. Calmels D, Gaillardet J, François L (2014) Sensitivity of carbonate weathering to soil CO2 production by biological activity along a temperate climate transect. Chem Geol 390:74–86. doi:10.1016/j.chemgeo.2014.10.010

    Article  Google Scholar 

  9. Carcaillet C, Almquist H, Asnong H et al (2002) Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere 49:845–863

    Article  Google Scholar 

  10. Carter M, Gregorich E (2007) Soil sampling and methods of analysis, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  11. Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia 143:1–10. doi:10.1007/s00442-004-1788-8

    Article  Google Scholar 

  12. Certini G, Corti G, Agnelli A, Sanesi G (2003) Carbon dioxide efflux and concentrations in two soils under temperate forests. Biol Fertil Soils 37:39–46. doi:10.1007/s00374-002-0560-7

    Google Scholar 

  13. Chang Huang C, Pang J, Chen S et al (2006) Charcoal records of fire history in the Holocene loess–soil sequences over the southern Loess Plateau of China. Palaeogeogr Palaeoclimatol Palaeoecol 239:28–44. doi:10.1016/j.palaeo.2006.01.004

    Article  Google Scholar 

  14. Costin A, Hallsworth E, Woof M (1952) Studies in pedogenesis in New South Wales III. The alpine humus soils. J Soil Sci 3:190–218

    Article  Google Scholar 

  15. Cowan B, Osborne M, Banner J (2013) Temporal variability of cave-air CO2 in central Texas. J Cave Karst Stud 75:38–50. doi:10.4311/2011ES0246

    Article  Google Scholar 

  16. Cuthbert MO, Rau GC, Andersen MS et al (2014) Evaporative cooling of speleothem drip water. Sci Rep 4:5162. doi:10.1038/srep05162

    Article  Google Scholar 

  17. Davidson E, Savage K, Trumbore S, Borken W (2006) Vertical partitioning of CO2 production within a temperate forest soil. Glob Chang 12:944–956. doi:10.1111/j.1365-2486.2006.01142.x

    Article  Google Scholar 

  18. Dreybrodt W (1999) Chemical kinetics, speleothem growth and climate. Boreas 28:347–356

    Article  Google Scholar 

  19. Froyd CA (2006) Holocene fire in the Scottish Highlands: evidence from macroscopic charcoal records. Holocene 16:235–249. doi:10.1191/0959683606hl910rp

    Article  Google Scholar 

  20. Genty D, Baker A, Vokal B (2000) Intra- and inter-annual growth rate of modern stalagmites. Chem Geol 176:191–212

    Article  Google Scholar 

  21. Gill A, Catling P (2002) Fire regimes and biodiversity of forested landscapes of southern Australia. In: Bradstock RA, Williams JE, Gill MA (eds) Flammable Australia: the fire regimes and biodiversity of a continent. Cambridge University Press, Cambridge, pp 352–369

  22. Ginzburg O, Steinberger Y (2012) Effects of forest wildfire on soil microbial-community activity and chemical components on a temporal-seasonal scale. Plant Soil 360:243–257. doi:10.1007/s11104-012-1243-2

    Article  Google Scholar 

  23. Goede A, McDermott F, Hawkesworth C et al (1996) Evidence of Younger Dryas and Neoglacial cooling in a Late Quaternary palaeotemperature record from a speleothem in eastern Victoria, Australia. J Quat Sci 11:1–7. doi:10.1002/(SICI)1099-1417(199601/02)11:1<1:AID-JQS219>3.0.CO;2-2

    Article  Google Scholar 

  24. Gongalsky KB, Malmström A, Zaitsev AS et al (2012) Do burned areas recover from inside? An experiment with soil fauna in a heterogeneous landscape. Appl Soil Ecol 59:73–86. doi:10.1016/j.apsoil.2012.03.017

    Article  Google Scholar 

  25. Granged AJP, Jordán A, Zavala LM et al (2011a) Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma 167–168:125–134. doi:10.1016/j.geoderma.2011.09.011

    Article  Google Scholar 

  26. Granged AJP, Zavala LM, Jordán A, Bárcenas-Moreno G (2011b) Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: a 3-year study. Geoderma 164:85–94. doi:10.1016/j.geoderma.2011.05.017

    Article  Google Scholar 

  27. Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration : a review of methods and observations. Biogeochemistry 48:115–146

    Article  Google Scholar 

  28. Hart SC, DeLuca TH, Newman GS et al (2005) Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils. For Ecol Manag 220:166–184. doi:10.1016/j.foreco.2005.08.012

    Article  Google Scholar 

  29. Holmgren K, Tyson P, Moberg A, Svanered O (2001) A preliminary 3000-year regional temperature reconstruction for South Africa. South African J Sci 97:49–51

    Google Scholar 

  30. Hou J, Tan M, Liu D (2002) Counting chronology and climate records with about 1000 annual layers of a Holocene stalagmite from the Water Cave in Liaoning Province, China. Sci China 45:385–391

    Article  Google Scholar 

  31. Jenerette GD, Scott RL, Barron-Gafford GA, Huxman TE (2009) Gross primary production variability associated with meteorology, physiology, leaf area, and water supply in contrasting woodland and grassland semiarid riparian ecosystems. J Geophys Res. doi:10.1029/2009JG001074

    Google Scholar 

  32. Jenkins M, Adams MA (2010) Vegetation type determines heterotrophic respiration in subalpine Australian ecosystems. Glob Chang Biol 16:209–219. doi:10.1111/j.1365-2486.2009.01954.x

    Article  Google Scholar 

  33. Keith D (2004) Ocean shores to desert dunes: the native vegetation of New South Wales and the ACT. NSW Department of Environment and Conservation, Sydney

    Google Scholar 

  34. Keller CK, White TM, O’Brien R, Smith JL (2006) Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem. J Geophys Res. doi:10.1029/2005JG000157

    Google Scholar 

  35. Knox RB, Ladiges P, Saint R (2001) Biology. McGraw-Hill, Roseville

    Google Scholar 

  36. Kuzyakov Y (2006) Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol Biochem 38:425–448. doi:10.1016/j.soilbio.2005.08.020

    Article  Google Scholar 

  37. Lindenmayer DB, Burgman M (2005) Fire and biodiversity. Practical Conservation Biology CSIRO Publishing, Melbourne, pp 293–317

    Google Scholar 

  38. McCarron JK, Knapp AK (2003) C3 shurb expansion in a C4 grassland: positive post-fire responses in resources and shoot growth. Am J Bontany 90:1496–1501

    Article  Google Scholar 

  39. McDonald J (2004) The 2002–2003 El Niño recorded in Australian cave drip waters: implications for reconstructing rainfall histories using stalagmites. Geophys Res Lett. doi:10.1029/2004GL020859

    Google Scholar 

  40. McDonald J, Drysdale R (2007) Hydrology of cave drip waters at varying bedrock depths from a karst system in southeastern Australia. Hydrol Process 1748:1737–1748. doi:10.1002/hyp

    Article  Google Scholar 

  41. McDonald J, Drysdale R, Hill D et al (2007) The hydrochemical response of cave drip waters to sub-annual and inter-annual climate variability, Wombeyan Caves, SE Australia. Chem Geol 244:605–623. doi:10.1016/j.chemgeo.2007.07.007

    Article  Google Scholar 

  42. Metcalfe DB, Fisher RA, Wardle DA (2011) Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change. Biogeosciences 8:2047–2061. doi:10.5194/bg-8-2047-2011

    Article  Google Scholar 

  43. Moriarty KC, McCulloch MT, Wells RT, McDowell MC (2000) Mid-Pleistocene cave fills, megafaunal remains and climate change at Naracoorte, South Australia: towards a predictive model using U-Th dating of speleothems. Palaeogeogr Palaeoclimatol Palaeoecol 159:113–143. doi:10.1016/S0031-0182(00)00036-5

    Article  Google Scholar 

  44. Morrison DA, Le Brocque AF, Clarke PJ (1995) An assessment of some improved techniques for estimating the abundance (frequency) of sedentary organisms. Vegetation 120:131–145

    Article  Google Scholar 

  45. Munoz A, Sen A, Sancho C, Genty D (2009) Wavelet analysis of late holocene stalagmite records from Ortigosa Caves in Northern Spain. J Cave Karst Stud 71:63–72

    Google Scholar 

  46. Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71. doi:10.1016/S0378-1127(99)00032-8

    Article  Google Scholar 

  47. Pereira P, Cerda A, Jordan A et al (2013) Spatio-temporal vegetation recuperation after a grassland fire in Lithuania. Procedia Environ Sci 19:856–864. doi:10.1016/j.proenv.2013.06.095

    Article  Google Scholar 

  48. Pharo EJ, Meagher DA, Lindenmayer DB (2013) Bryophyte persistence following major fire in eucalypt forest of southern Australia. For Ecol Manag 296:24–32. doi:10.1016/j.foreco.2013.01.018

    Article  Google Scholar 

  49. Proctor CJ, Baker A, Barnes WL, Gilmour MA (2000) A thousand year speleothem proxy record of North Atlantic climate from Scotland. Clim Dyn 16:815–820. doi:10.1007/s003820000077

    Article  Google Scholar 

  50. Qin X, Tan M, Liu T et al (1999) Spectral analysis of a 1000-year stalagmite lamina-thickness record from Shihua Cavern, Beijing, China, and its climatic significance. Holocene 9:689–694. doi:10.1191/095968399671019413

    Article  Google Scholar 

  51. Raich JW, Tufekcioglu A (2000) Vegetation and soil respiration: correlations and controls. Biogeochemistry 48:71–90

    Article  Google Scholar 

  52. Risk D, Kellman L, Beltrami H (2002) Carbon dioxide in soil profiles: production and temperature dependence. Geophys Res Lett 29:1–4

    Article  Google Scholar 

  53. Rutlidge H, Baker A, Marjo CE et al (2014) Dripwater organic matter and trace element geochemistry in a semi-arid karst environment: implications for speleothem paleoclimatology. Geochim Cosmochim Acta 135:217–230. doi:10.1016/j.gca.2014.03.036

    Article  Google Scholar 

  54. Schoffl F, Prandl R, Reindl A (1999) Molecular responses to heat stress. In: Shinozaki K, Yamaguchi-Shinozaki K (eds) Molecular responses to cold, drought, heat and salt stress in higher plants. R.G. Landes Co., Austin, pp 81–98

    Google Scholar 

  55. Tan M (2003) Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophys Res Lett 30:1617. doi:10.1029/2003GL017352

    Article  Google Scholar 

  56. Tan L, Shen C, Cai Y et al (2014) Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China. Quat Res 81:181–188. doi:10.1016/j.yqres.2013.12.001

    Article  Google Scholar 

  57. Treble P, Shelley JMG, Chappell J (2003) Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia. Earth Planet Sci Lett 216:141–153. doi:10.1016/S0012-821X(03)00504-1

    Article  Google Scholar 

  58. Treble P, Chappell J, Gagan M et al (2005) In situ measurement of seasonal δ18O variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth Planet Sci Lett 233:17–32. doi:10.1016/j.epsl.2005.02.013

    Article  Google Scholar 

  59. Treble PC, Bradley C, Wood A et al (2013) An isotopic and modelling study of flow paths and storage in Quaternary calcarenite, SW Australia: implications for speleothem paleoclimate records. Quat Sci Rev 64:90–103. doi:10.1016/j.quascirev.2012.12.015

    Article  Google Scholar 

  60. Trouet V, Esper J, Graham NE et al (2009) Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science 324:78–80. doi:10.1126/science.1166349

    Article  Google Scholar 

  61. Uribe C, Inclán R, Sánchez DM et al (2013) Effect of wildfires on soil respiration in three typical Mediterranean forest ecosystems in Madrid, Spain. Plant Soil 369:403–420. doi:10.1007/s11104-012-1576-x

    Article  Google Scholar 

  62. Vargas R, Allen MF (2008) Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration. New Phytol 179:460–471

    Article  Google Scholar 

  63. Voncina A, Ferlan M, Eler K et al (2014) Effects of fire on carbon fluxes of a calcareous grassland. Int J Wildl Fire 23:425–434

    Article  Google Scholar 

  64. Wang W, Zeng W, Chen W et al (2013) Soil respiration and organic carbon dynamics with grassland conversions to woodlands in temperate china. PLoS ONE 8:e71986. doi:10.1371/journal.pone.0071986

    Article  Google Scholar 

  65. Worboys G (1982) Koscuisko National Park Geology and Geomorphology. National Parks and Wildlife Services, Sydney

    Google Scholar 

  66. Xia Q, Zhao J, Collerson KD (2001) Early-Mid Holocene climatic variations in Tasmania, Australia: multi-proxy records in a stalagmite from Lynds Cave. Earth Planet Sci Lett 194:177–187

    Article  Google Scholar 

  67. Zedler PH (2007) Fire effects on grasslands. In: Johnson EA, Miyanishi K (eds) Plant disturbance ecology: the process and the response. Academic Press Inc, Amsterdam, pp 397–439

    Google Scholar 

Download references

Acknowledgments

This research was funded by the Australian Research Council LP130100177. The authors would like to thank the National Parks and Wildlife Services at Yarrangobilly Caves, in particular Regina Roach and George Bradford. We also express gratitude to Stuart Hankins for allowing us access to the weather station data at Yarrangobilly Caves.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katie Coleborn.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coleborn, K., Spate, A., Tozer, M. et al. Effects of wildfire on long-term soil CO2 concentration: implications for karst processes. Environ Earth Sci 75, 330 (2016). https://doi.org/10.1007/s12665-015-4874-9

Download citation

Keywords

  • Speleothem
  • Fire
  • Carbon dioxide
  • Soil CO2 concentration
  • Paleoclimate reconstruction
  • Karst