Advertisement

Environmental Earth Sciences

, Volume 74, Issue 10, pp 7117–7131 | Cite as

Intertwining agents and environments

  • Paul M. TorrensEmail author
Thematic Issue

Abstract

Connections between human agents and dynamic natural and physical environments can be difficult to explore, particularly for critical scenarios in which evidence is often scarce. For these scenarios, we often turn to modeling and simulation as sandboxes for our inquiry. However, in the absence of fine-grain ground truth about events and phenomena that are often extraordinary in the human experience, our models have settled upon a tradition of coarse representation. In this paper, we introduce a method for developing rich connections between agents and environment. We present a scheme for Virtual Geographic Environments, which puts them to use as a platform for intertwining diverse spatial data from Geographic Information Systems, three-dimensional mesh models of built settings, agent-based models of human cognition and movement, and richly specified process models for physical phenomena and human behavior. To demonstrate the usefulness of the scheme, we will present a unified model of human–physical response to built damage following a simulated earthquake.

Keywords

Geosimulation Modeling and simulation Virtual reality Earthquakes Evacuation GIS 

Notes

Acknowledgments

This material is based in part upon work supported by the National Science Foundation under grant numbers 1340984, 1343123, and 1441177. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.

References

  1. Abdul-Rahman A, Pilouk M (2007) Spatial data modelling for 3D GIS. Springer, BerlinGoogle Scholar
  2. Aluminum Company of America (1942) The place they do imagineering. Time Mag 39(7):59Google Scholar
  3. Anselin L, Getis A (2010) Spatial statistical analysis and geographic information systems. In: Anselin L, Rey SJ (eds) Perspectives on spatial data analysis. Springer, Berlin, pp 35–47CrossRefGoogle Scholar
  4. Badler NI, Manoochehri KH, Walters G (1987) Articulated figure positioning by multiple constraints. Comput Graph Appl 7(6):28–38CrossRefGoogle Scholar
  5. Baillie-deByl P (2004) Programming believable characters for computer games. Charles River Media, HinghamGoogle Scholar
  6. Bainbridge WS (2007) The scientific research potential of virtual worlds. Science 317(5837):472–476CrossRefGoogle Scholar
  7. Barnes T, Encarnação LM, Shaw CD (2009) Serious games. Comput Graph Appl 29(2):18–19CrossRefGoogle Scholar
  8. Batty M (1997) Virtual geography. Futures 29(4):337–352CrossRefGoogle Scholar
  9. Batty M, Chapman D, Evans S, Haklay M, Kueppers S, Shiode N, Smith A, Torrens PM (2001) Visualizing the city: communicating urban design to planners and decision-makers. In: Brail RK, Klosterman RE (eds) Planning support systems in practice: Integrating geographic information systems, models, and visualization tools. ESRI Press and Center for Urban Policy Research Press, Redlands, pp 405–443Google Scholar
  10. Benenson I, Torrens PM (2004) Geosimulation: automata-based modeling of urban phenomena. John Wiley & Sons, LondonCrossRefGoogle Scholar
  11. Boots BN (1986) CATMOG 45: voronoi (thiessen) polygons. Geo Books, NorwichGoogle Scholar
  12. Bosch C, Laffont P-Y, Rushmeier H, Dorsey J, Drettakis G (2011) Image-guided weathering: a new approach applied to flow phenomena. ACM Trans Graph 30(3):1–13CrossRefGoogle Scholar
  13. Brimicombe A, Li Y (2006) Mobile space-time envelopes for location-based services. Trans GIS 10(1):5–23CrossRefGoogle Scholar
  14. Butler D (2006) Virtual globes: the web-wide world. Nature 439(7078):776–778CrossRefGoogle Scholar
  15. Champandard A (2003) AI game development: synthetic creatures with learning and reactive behaviors. New Riders, IndianapolisGoogle Scholar
  16. Chen M, Lin H, Wen Y, He L, Hu M (2011) Construction of a virtual lunar environment platform. Int J Digit Earth 6(5):469–482CrossRefGoogle Scholar
  17. Chen M, Lin H, Wen Y, He L, Hu M (2012) Sino-virtualmoon: a 3D web platform using Chang’E-1 data for collaborative research. Planet Space Sci 65(1):130–136CrossRefGoogle Scholar
  18. Chen M, Lin H, He L, Hu M, Zhang C (2013) Real-geographic-scenario-based virtual social environments: integrating geography with social research. Environ Plan 40(6):1103–1121CrossRefGoogle Scholar
  19. Coco D (1997) Creating intelligent creatures. Comput Graph World 20(7):22–28Google Scholar
  20. Cowen DJ (1988) GIS versus CAD versus DBMS: what are the differences? Photogramm Eng Remote Sens 54(11):1551–1555Google Scholar
  21. Crooks A, Hudson-Smith A, Dearden J (2009) Agent street: an environment for exploring agent-based models in second life. J Artif Soc Soc Simul 12(4):10Google Scholar
  22. Crooks AD. Pfoser A, Jenkins A, Croitoru A, Stefanidis D, Smith S, Karagiorgou A, Efentakisd, Lamprianidis G (2015) Crowdsourcing urban form and function. Int J Geograph Informat SciGoogle Scholar
  23. Crooks AT, Heppenstall AJ, See LM, Batty M (2012) Agent-based models of geographical systems. Springer, New YorkGoogle Scholar
  24. Crooks A, Croitoru A, Stefanidis A, Radzikowski J (2013) #Earthquake: twitter as a distributed sensor system. Trans GIS 17(1):124–147CrossRefGoogle Scholar
  25. De Berg M, Van Kreveld M, Overmars M, Schwarzkopf OC (2000) Computational geometry: algorithms and applications. Springer, BerlinCrossRefGoogle Scholar
  26. Dijkstra EW (1959) A note on two problems in connection with graphs. Numer Math 1:269–271CrossRefGoogle Scholar
  27. Eberly DH (2005) 3D game engine design. Morgan Kauffman, San FranciscoGoogle Scholar
  28. Eberly DH (2007) 3D game engine architecture: a practical approach to real-time computer graphics, 2nd edn. Morgan Kauffman, San FranciscoGoogle Scholar
  29. Edelsbrunner H (1986) Edge-skeletons in arrangements with applications. Algorithmica 1(1–4):93–109CrossRefGoogle Scholar
  30. Egenhofer MJ (2002) Toward the semantic geospatial web. In: Makki K, Pissinou N (eds) The tenth ACM international symposium on advances in geographic information systems. ACM, McLean, pp 1–4Google Scholar
  31. Elwood S (2008) Volunteered geographic information: key questions, concepts and methods to guide emerging research and practice. GeoJournal 72(3):133–135CrossRefGoogle Scholar
  32. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) The KDD process for extracting useful knowledge from volumes of data. Commun ACM 39(11):27–34CrossRefGoogle Scholar
  33. Gao S, Janowicz K, McKenzie G, Li L (2013) Towards platial joins and buffers in place-based GIS. In: Knoblock CA, and Schneider M (eds). Paper read at Proceedings of the first acm sigspatial international workshop on computational models of place (COMP’2013), Orlando, FL, November 5–8, 2013Google Scholar
  34. Glondu L, Muguercia L, Marchal M, Bosch C, Rushmeier H, Dumont G, Drettakis G (2012) Example-based fractured appearance. Comput Graph Forum 31(4):1547–1556CrossRefGoogle Scholar
  35. Gong J, Zhou J, Li W, Lin H (2006) Design and implementation of an intelligent virtual geographic environment for the simulation of SARS transmission. In: Sun H, Thalmann D, Wu E (eds) Proceedings of the 2006 ACM international conference on virtual reality continuum and its applications, Hong Kong, June 14–17, 2006. ACM, Hong Kong, pp 383–386Google Scholar
  36. Goodchild MF (2005) GIS and modeling overview. In: Maguire DJ, Batty M, Goodchild MF (eds) GIS, spatial analysis, and modeling. ESRI Press, Redlands, pp 1–17Google Scholar
  37. Goodchild MF (2008) Geographic information science: the grand challenges. In: Wilson JP, Fotheringham SA (eds) The handbook of geographic information science. Blackwell Publishing Ltd., London, pp 596–608Google Scholar
  38. Goodchild MF (2009) Geographic information systems and science: today and tomorrow. Annals GIS 15(1):3–9CrossRefGoogle Scholar
  39. Goodchild MF, Anselin L, Appelbaum RP, Harthorn BH (2000) Toward spatially integrated social science. Int Reg Sci Rev 23(2):139–159CrossRefGoogle Scholar
  40. Goodchild MF, Yuan M, Cova TJ (2007) Towards a general theory of geographic representation in GIS. Int J Geogr Inf Sci 21(3):239–260CrossRefGoogle Scholar
  41. Goodchild MF, Guo H, Annoni A, Bian L, de Bie K, Campbell F, Craglia M, Ehlers M, van Genderen J, Jackson D (2012) Next-generation digital earth. Proc Natl Acad Sci 109(28):11088–11094CrossRefGoogle Scholar
  42. Gould P, White R (1974) Mental maps. Routledge, New YorkCrossRefGoogle Scholar
  43. Graham M, Shelton T (2013) Geography and the future of big data, big data and the future of geography. Dialog Hum Geogr 3(3):255–261CrossRefGoogle Scholar
  44. Haining R, Wise S, Ma J (1998) Exploratory spatial data analysis. J R Stat Soc Ser D 47(3):457–469CrossRefGoogle Scholar
  45. Hammam Y, Moore A, Whigham P (2007) The dynamic geometry of geographical vector agents. Comput Environ Urban Syst 31(5):502–519CrossRefGoogle Scholar
  46. Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107CrossRefGoogle Scholar
  47. Hsieh H-H, Tai W-K (2006) A straightforward and intuitive approach on generation and display of crack-like patterns on 3D Objects. In: Nishita T, Peng Q, Seidel H-P (eds) Advances in computer graphics (lecture notes in computer science 4035). Springer, Berlin, pp 554–561Google Scholar
  48. Laird JE (2002) Research in human-level AI using computer games. Commun Assoc Comput Mach 45(1):32–35Google Scholar
  49. Lappe M, Bremmer F, Van den Berg A (1999) Perception of self-motion from visual flow. Trends Cogn Sci 3(9):329–336CrossRefGoogle Scholar
  50. Lappe M, Jenkin M, Harris LR (2007) Travel distance estimation from visual motion by leaky path integration. Exp Brain Res 180(1):35–48CrossRefGoogle Scholar
  51. Lappe M, Stiels M, Frenz H, Loomis JM (2011) Keeping track of the distance from home by leaky integration along veering paths. Exp Brain Res 212(1):81–89CrossRefGoogle Scholar
  52. Latombe J-C (1991) Robot Motion planning. Kluwer Academic Publishers, NorwellCrossRefGoogle Scholar
  53. Li K, Peng Z, Crittenden J, Guhathakurta S, Sawhney A, Fernando H, McCartney P, Grimm N, Joshi H, Konjevod G, Choi Y, Winter S, Gerrity D, Kahhat R, Chen Y, Allenby B, Torrens PM (2007) Development of a framework for quantifying the environmental impacts of urban development and construction practices. Environ Sci Technol 41(14):5130–5136CrossRefGoogle Scholar
  54. Lin H, Batty M (2011) Virtual geographic environments: a primer. ESRI Press, RedlandsGoogle Scholar
  55. Lin H, Huang F, Lu G (2009a) Development of virtual geographic environments and the new initiative in experimental geography. Acta Geogr Sin 64(1):7–20Google Scholar
  56. Lin H, Zhu J, Xu B, Lin W, Hu Y (2009b) A virtual geographic environment for a simulation of air pollution dispersion in the pearl river delta (PRD) region. In: Lee J, Zlatanova S (eds) 3D geo-information sciences. Springer, Berlin, pp 3–13CrossRefGoogle Scholar
  57. Lin H, Chen M, Lu G (2013) Virtual geographic environment: a workspace for computer-aided geographic experiments. Ann Assoc Am Geogr 103(3):465–482CrossRefGoogle Scholar
  58. Marling KA, Harris N, Doss E, Tuan Y-F, Marcus G (1998) Designing disney’s theme parks: the architecture of reassurance. Flammarion, ParisGoogle Scholar
  59. Millington I (2006) Artificial intelligence for games. Morgan Kauffman, San FranciscoGoogle Scholar
  60. Millington I (2007) Game physics engine development. Morgan Kaufmann Publishers, AmsterdamGoogle Scholar
  61. Moore A, Drecki I (2013) Geospatial visualisation: Springer Science & Business Media, Springer, BerlinGoogle Scholar
  62. Morris K, Hill D, Moore A (2000) Mapping the environment through three-dimensional space and time. Comput Environ Urban Syst 24(5):435–450CrossRefGoogle Scholar
  63. Muguercia L, Bosch C, Patow G (2014) Fracture modeling in computer graphics. Comput Graph 45:86–100CrossRefGoogle Scholar
  64. Newton I (1687) Philosophiae Naturalis Principia Mathematica. Royal Society of London for the Improvement of Natural Knowledge, LondonGoogle Scholar
  65. NVIDIA (2012) PhysX 9.11.0621. NVIDIA Corporation, Santa ClaraGoogle Scholar
  66. Okabe A, Boots BN, Sugihara K, Chiu SN (1992) Spatial tessellations: concepts and applications of voronoi diagrams. John Wiley & Sons, ChichesterGoogle Scholar
  67. Parker EG, O’Brien JF (2009) Real-time deformation and fracture in a game environment. In: Tamstorf R, Fellner D, Spencer S (eds) Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation. Assocation for Computing Machinery, New Orleans, pp 156–166Google Scholar
  68. Reznor TM (2013) Copy of A. Form and Texture Inc, Los AngelesGoogle Scholar
  69. Samet H (1984) The quadtree and related hierarchical data structures. ACM Comput Surv 16(2):187–260CrossRefGoogle Scholar
  70. Scott B (2002) The illusion of intelligence. In: Rabin S (ed) AI game programming wisdom. Charles River Media, Rockland, pp 16–21Google Scholar
  71. Shiode N, Torrens PM (2008) Comparing the growth dynamics of real and virtual cities. In: Hornsby K, Yuan M (eds) Understanding dynamics of geographic domains. CRC Press, Boca Raton, pp 187–203CrossRefGoogle Scholar
  72. Shirley P (2005) Fundamentals of Computer graphics, 2nd edn. A.K. Peters Ltd, WellesleyGoogle Scholar
  73. Sui D, Goodchild M (2011) The convergence of GIS and social media: challenges for GIScience. Int J Geogr Inf Sci 25(11):1737–1748CrossRefGoogle Scholar
  74. Thiessen AH (1911) Precipitation averages for large areas. Mon Weather Rev 39(7):1082–1089Google Scholar
  75. Torrens PM (2007) Behavioral intelligence for geospatial agents in urban environments. In: Lin TY, Bradshaw JM, Klusch M, Zhang C (eds) IEEE intelligent agent technology (IAT 2007). IEEE, Los Alamitos, pp 63–66CrossRefGoogle Scholar
  76. Torrens PM (2008) Wi-Fi geographies. Ann Assoc Am Geogr 98(1):59–84CrossRefGoogle Scholar
  77. Torrens PM (2009) Process models and next-generation geographic information technology. In: GIS best practices: essays on geography and GIS. volume 2, ed. ESRI, 63–75. Redlands, CA: ESRI PressGoogle Scholar
  78. Torrens PM (2010) Geography and computational social science. GeoJournal 75(2):133–148CrossRefGoogle Scholar
  79. Torrens PM (2012) Moving agent pedestrians through space and time. Ann Assoc Am Geogr 102(1):35–66CrossRefGoogle Scholar
  80. Torrens PM (2014a) High-fidelity behaviours for model people on model streetscapes. Annals GIS 20(3):139–157CrossRefGoogle Scholar
  81. Torrens PM (2014b) High-resolution space–time processes for agents at the built–human interface of urban earthquakes. Int J Geogr Inf Sci 28(5):964–986CrossRefGoogle Scholar
  82. Torrens PM (2015a) Geographical agents in three dimensions. In: Singleton A, Brunsdon C (eds) Geocomputation: a practical primer. Sage, London, pp 40–62Google Scholar
  83. Torrens PM (2015b) Slipstreaming human geosimulation in virtual geographic environments. Annals GIS. http://www.tandfonline.com/doi/pdf/10.1080/19475683.2015.1009489):1-20
  84. Torrens PM, Benenson I (2005) Geographic automata systems. Int J Geogr Inf Sci 19(4):385–412CrossRefGoogle Scholar
  85. Torrens P, McDaniel A (2013) Modeling geographic behavior in riotous crowds. Ann Assoc Am Geogr 103(1):20–46CrossRefGoogle Scholar
  86. Torrens PM, Nara A (2013) Polyspatial agents for multi-scale urban simulation and regional policy analysis. Reg Sci Polic Pract 44(4):419–445Google Scholar
  87. Torrens PM, Nara A, Li X, Zhu H, Griffin WA, Brown SB (2012) An extensible simulation environment and movement metrics for testing walking behavior in agent-based models. Comput Environ Urban Syst 36(1):1–17CrossRefGoogle Scholar
  88. Vadim M (2009) RayFire 1.57.05. Orange-Lab, MoscowGoogle Scholar
  89. Voronoï GF (1907) Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. (New applications of continuous parameters to the theory of quadratic forms). Journal für die reine und angewandte Mathematik (J Pure Appl Math Crelle’s J) 133(1):97–178Google Scholar
  90. Wen Y, Chen M, Lu G, Lin H, He L, Yue S (2013) Prototyping an open environment for sharing geographical analysis models on cloud computing platform. Int J Digi Earth 6(4):356–382CrossRefGoogle Scholar
  91. Wright DJ, Wang S (2011) The emergence of spatial cyberinfrastructure. Proc Natl Acad Sci 108(14):5488–5491CrossRefGoogle Scholar
  92. Xu B, Lin H, Chiu L, Hu Y, Zhu J, Hu M, Cui W (2011) Collaborative virtual geographic environments: a case study of air pollution simulation. Inf Sci 181(11):2231–2246CrossRefGoogle Scholar
  93. Xu B, Lin H, Gong J, Tang S, Hu Y, Nasser IA, Jing T (2013) Integration of a computational grid and virtual geographic environment to facilitate air pollution simulation. Comput Geosci 54:184–195CrossRefGoogle Scholar
  94. Zhang J, Gong J, Lin H, Wang G, Huang J, Zhu J, Xu B, Teng J (2007) Design and development of distributed virtual geographic environment system based on web services. Inf Sci 177(19):3968–3980CrossRefGoogle Scholar
  95. Zhang C, Chen M Li R, Fang C, Lin H (2015) What’s going on about geo-process modeling in virtual geographic environments (VGEs). Ecol Model. doi: 10.1016/j.ecolmodel.2015.04.023
  96. Zhu Q, Gong J, Zhang Y (2007) An efficient 3D R-tree spatial index method for virtual geographic environments. ISPRS J Photogramm Remote Sens 62(3):217–224CrossRefGoogle Scholar
  97. Zyda M (2005) From visual simulation to virtual reality to games. Computer 38(9):25–33CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Geographical Sciences and Institute for Advanced Computer StudiesCenter for Geospatial Information Science and Geosimulation Research Laboratory, University of MarylandCollege ParkUSA

Personalised recommendations