Skip to main content

Advertisement

Log in

Estimation of groundwater recharge and its relation to land degradation: case study of a semi-arid river basin in Iran

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater extraction is one of the most important criteria of land degradation especially land subsidence in arid and semi-arid areas. Understanding the relationship between water extraction and recharge of groundwater can lead to better watershed management. For the estimation of groundwater recharge in Razan-Ghahavand watershed in Central Iran the Soil and Water Assessment Tools was used. Model calibration was done by using SUFI-2 based on monthly river discharge and annual crop yield, where crop yield was used to better estimate the evapotranspiration term, which consequently increased our knowledge on estimating aquifer recharge. The calibration results were satisfactory: The Nash–Sutcliffe model efficiency ranged from 0.53 to 0.63 for calibration and from 0.42 to 0.72 for validation. The results showed that, although the groundwater level was decreasing about 1 m per year, the groundwater recharge did not change significantly leading to a net withdrawal causing land subsidence over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430. doi:10.1016/j.jhydrol.2006.09.014

    Article  Google Scholar 

  • Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. J Water Resour Res 45:1–16. doi:10.1029/2008WRoo7615

    Article  Google Scholar 

  • Abbaspour KC (2011) User manual for SWAT-CUP, SWAT Calibration and Uncertainty Analysis Programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Duebendorf, Switzerland, p 103

  • Acharyya A (2014) Groundwater, climate change and sustainable well being of the poor: policy options for South Asia, China and Africa. Procedia-Soc Behav Sci 157:226–235

    Article  Google Scholar 

  • Adeel Z, Safriel U, Niemeijer D, White R (2005) Ecosystems and human well-being: desertification synthesis. World Resource Institute, Washington, DC

    Google Scholar 

  • Akhavan S, Abedi-Koupai J, Mousavi SF, Afyuni M, Eslamian SS, Abbaspour KC (2010) Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agric Ecosyst Environ J 139:675–688

    Article  Google Scholar 

  • Amiri M (2005) Relationship between Sinkholes of Famenin–Kabudrahang–Ghahavand Plain and the Bed Rock of the Area. Geosci J 58:134–147 (Persian language)

    Google Scholar 

  • Arnold JG, Allen PM (1999) Automated methods for estimating baseflow and ground water recharge from streamflow records. J Am Water Resour Assoc 35:411–424

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment–part 1: model development. J Am Water Resour Assoc 34:73–89

    Article  Google Scholar 

  • Arnold JG, Muttiah RS, Srinivasan R, Allen PM (2000) Regional estimation of base flow and groundwater recharge in the Upper Mississippi River Basin. J Hydrol 227:21–40

    Article  Google Scholar 

  • Awan UK, Ismaeel A (2014) A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. J Hydrol 519:1368–1382

    Article  Google Scholar 

  • Awan UK, Tischbein B, Martius C (2013) Combining hydrological modeling and GIS approaches to determine the spatial distribution of groundwater recharge in an arid irrigation scheme. Irrig Sci 31(4):793–806

    Article  Google Scholar 

  • Barthel R, Reichenau TG, Krimly TD, Schneider K, Mauser W (2012) Integrated modeling of global change impacts on agriculture and groundwater resources. Water Resour Manag 26:1929–1951. doi:10.1007/s11269-012-0001-9

    Article  Google Scholar 

  • Bisantino T, Bingner R, Chouaib W, Gentile F, Trisorio Liuzzi G (2013) Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size Mediterranean watershed using the ANNAGNPS model. Land Degrad Dev. doi:10.1002/ldr.2213

    Google Scholar 

  • Cerdà A (1998) Effect of climate on surface flow along a climatological gradient in Israel. A field rainfall simulation approach. J Arid Environ 38:145–159. doi:10.1006/jare.1997.0342

    Article  Google Scholar 

  • Cerdà A, Jurgensen MF (2011) Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain. A three-scale rainfall simulation approach. Catena 85(3):231–236. doi:10.1016/j.catena.2011.01.008

    Article  Google Scholar 

  • Cerdà A, Hooke J, Romero-Diaz A, Montanarella L, Lavee H (2010) Soil erosion on Mediterranean type-ecosystems. Land Degrad Dev 21:71–217

    Article  Google Scholar 

  • Cerdà A, Brazier R, Nearing M, de Vente J (2013) Preface: scales and erosion. Catena 102:1–2. doi:10.1016/j.catena.2011.09.006

    Article  Google Scholar 

  • Chen YN, Li WH, Xu HL, Liu JZ, Zhang HF, Chen YP (2003) The influence of groundwater on vegetation in the lower reaches of Tarim River. Acta Geogr Sin 58:542–549

    Google Scholar 

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284:244–252

    Article  Google Scholar 

  • Fan X, Pedroli B, Liu G, Liu Q, Liu H, Shu L (2012) Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degrad Dev 23:175–189

    Article  Google Scholar 

  • Faramarzi M, Abbaspour KC, Schulin R, Yang H (2009) Modelling blue and green water resources availability in Iran. Hydrol Process 23:486–501

    Article  Google Scholar 

  • Faramarzi M, Yang H, Schulin R, Abbaspour KC (2010) Modeling wheat yield and crop water productivity in Iran: implications of agricultural water management for wheat production. Agric Water Manag 97:1861–1875

    Article  Google Scholar 

  • Finch JW (1998) Estimating direct groundwater recharge using a simple water balance model—sensitivity to land surface parameters. J Hydrol 211:112–125

    Article  Google Scholar 

  • García-Orenes F, Roldán A, Mataix-Solera J, Cerdà A, Campoy M, Arcenegui V, Caravaca F (2012) Soil structural stability and erosion rates influenced by agricultural management practices in a semi-arid Mediterranean agro-ecosystem. Soil Use Manag 28:571–579

    Article  Google Scholar 

  • Gehrels H, Peters NE, Hoehn E (2001) Impact of human activity on groundwater dynamics. IAHS Press, Wallingford

    Google Scholar 

  • Githui F, Selle B, Thayalakumaran T (2012) Recharge estimation using remotely sensed evapotranspiration in an irrigated catchment in southeast Australia. Hydrol Process 26(9):1379–1389

    Article  Google Scholar 

  • González-Peñaloza FA, Cerdà A, Zavala LM, Jordán A, Giménez-Morera A, Arcenegui V (2012) Do conservative agriculture practices increase soil water repellency? A case study in citrus-cropped soils. Soil Tillage Res 124:233–239

    Article  Google Scholar 

  • Guo Q, Feng Q, Li J (2009) Environmental changes after ecological water conveyance in the lower reaches of Heihe River, northwest China. Environ Geol 58(7):1387–1396

    Article  Google Scholar 

  • Hargreaves G, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99

    Article  Google Scholar 

  • Imbrenda V, Coluzzi R, Calamita G, Giannossi ML, D’Emilio M, Lanfredi M, Makris J, Palombo A, Pascucci S, Santini F, Margiotta S, Bonomo AE, Martino GD, Perrone A, Rizzo E, Pignatti S, Summa V, Simoniello T (2015) Integration of remote sensing and ground-based techniques for the study of land degradation phenomena in coastal areas. Geophys Res Abs 17, EGU2015-14871-1

  • Immerzeel WW, Droogers P (2008) Calibration of a distributed hydrological model based on satellite evapotranspiration. J Hydrol 349:411–424

    Article  Google Scholar 

  • Jafari R, Bakhshandehmehr L (2013) Quantitative mapping and assessment of environmentally sensitive areas to desertification in central Iran. Land Degrad Dev. doi:10.1002/ldr.2227

    Google Scholar 

  • Ji XB, Kang ES, Chen RSh, Zhao WZh, Zhang ZhH, Jin BW (2006) The impact of the development of water resources on environment in Arid Inland River basins of Hexi region, Northwestern. China Environ Geol 50:793–801

    Article  Google Scholar 

  • Kappas M, Propastin P (2013) Monitoring and assessment of dryland ecosystems with remote sensing. In: Chen J, Wan S, Henebry G, Qi J, Gutman G, Sun G, Kappas M (eds) Dryland East Asia: Land dynamics amid social and climate change. De Gruyter and Higher Education Press, Berlin, pp 311–350

    Google Scholar 

  • Kite GW (1995) The SLURP model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, pp 521–562

    Google Scholar 

  • Mahmoodabadi M, Cerdà A (2013) WEPP calibration for improved predictions on interrill erosion in semi-arid to arid environments. Geoderma 204–205:75–83. doi:10.1016/j.geoderma.2013.04.013/

    Article  Google Scholar 

  • Manghi F, Mortazavi B, Crother C, Hamdi MR (2009) Estimating regional groundwater recharge using a hydrological budget method. Water Resour Manag 23:2475–2489. doi:10.1007/s11269-008-9391-0

    Article  Google Scholar 

  • Martínez-Murillo JF, Nadal-Romero E, Regües D, Cerdà A, Poesen J (2013) Soil erosion and hydrology of the western Mediterranean badlands throughout rainfall simulation experiments: a review. Catena 106:101–112. doi:10.1016/j.catena.2012.06.001

    Article  Google Scholar 

  • Motagh M, Walter TR, Sharifi MA, Fielding E, Schenk A, Anderssohn J, Zschau J (2008) Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophys Res Lett 35. doi:10.1029/2008GL033814

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2011) Soil and water assessment tool. Theoretical documentation. TWRI TR-191. Texas Water Resources Institute, College Station, Texas

  • Qi SZ, Luo F (2005) Water environmental degradation of the Heihe River basin in arid northwestern China. Environ Monit Assess 108:205–215

    Article  Google Scholar 

  • Rafiei Emam A, Zehtabian Gh (2006) A study of factors influencing land degradation in Varamin plain, Iran. Iran J Nat Resour 59(2):289–299 (Persian language)

    Google Scholar 

  • Rafiei Emam A, Kappas M, Hosseini SZ (2015a) Assessing the impact of climate change on water resources, crop production and land degradation in a semi-arid river basin. Hydrol Res. doi:10.2166/nh.2015.143

    Google Scholar 

  • Rafiei Emam A, Kappas M, Abbaspour KC (2015b) Simulation of water balance components in a watershed located in central drainage basin of Iran. In: Lakshmi V (ed) Remote sensing of the terrestrial water cycle. Geophysical monograph 206. American Geophysical Union. Wiley Press, New York. ISBN: 9781118872031

  • Raneesh KY, Thampi SG (2013) A simple semi-distributed hydrologic model to estimate groundwater recharge in a humid tropical basin. Water Resour Manag 27:1517–1532

    Article  Google Scholar 

  • Rostamian R, Jaleh A, Afyuni M, Mousavi SF, Heidarpour M, Jalalian A, Abbapour KC (2008) Application of SWAT model for estimation runoff and sediment in two mountainous basins in central Iran. Hydrol Sci J 53(5):977–988

    Article  Google Scholar 

  • Saxton KE, Willey PH (2005) Watershed models. The SPAW model for agricultural field and pond hydrologic simulation. CRC Press, Boca Raton, pp 400–435

  • Scanlon BR, Alan D (2002) Groundwater recharge in Texas. Kansas Geological Survey, Lawrence, KS

    Google Scholar 

  • Scanlon BR, Faunt CC, Longuevergnec L, Reedya RC, Alley WM, McGuired VL, McMahone PB (2012) Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. PNAS 109(24):9320–9325

    Article  Google Scholar 

  • Schmalz B, Tavares F, Fohrer N (2008) Modeling hydrological processes in mesoscale lowland river basins with SWAT—capabilities and challenges. Hydrol Sci J 53(5):989–1000

    Article  Google Scholar 

  • Schuol J, Abbaspour KC, Srinivasan R, Yang H (2008) Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. J Hydrol 352:30–49

    Article  Google Scholar 

  • Schwilch G (2012) A process for effective desertification mitigation. PhD thesis. Wageningen University, p 178

  • Sharpley AN, Williams JR (1990) EPIC—erosion productivity impact calculator: 1. Model documentation. U.S. Department of Agriculture, Agricultural Research Service, Tech. Bull. 1768

  • Singh VP (1995) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, Colorado, p 1130

    Google Scholar 

  • Sun H, Cornish PS (2005) Estimating shallow groundwater recharge in the headwaters of the Liverpool Plains using SWAT. Hydrol Process 19(3):795–807

    Article  Google Scholar 

  • Switzman H, Coulibaly P, Adeel Z (2015) Modeling the impacts of dryland agricultural reclamation on groundwater resources in Northern Egypt using sparse data. J Hydrol 520:420–438

    Article  Google Scholar 

  • Timothy HD (2006) Space geodesy: subsidence and flooding in New Orleans. Nature 441:587–588

    Article  Google Scholar 

  • UNDP (2007) Water: critical resource for Uzbekistan’s future. United Nations Development Program, Tashkent

    Google Scholar 

  • Vaghefi S, Abbaspour K, Mousavi S, Srinivasan R, Yang H (2014) Analyses of the impact of climate change on water resources components, drought and wheat yield in the semi-arid Karkheh River Basin in Iran. Hydrol Process 28(4):2018–2032

    Article  Google Scholar 

  • Voss KA, Famiglietti JS, Lo MH, Linage C, Rodell M, Swenson SC (2013) Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris–Euphrates-Western Iran Region. Water Resour Res 49(2):904–914

    Article  Google Scholar 

  • Wen X, Wu Y, Su J, Zhang Y, Liu F (2005) Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environ Geol 48:665–675

    Article  Google Scholar 

  • Wisler CO, Brater EF (1959) Hydrology. Wiley Press, New York

    Google Scholar 

  • Xu X, Huang G, Qu Z, Pereira LS (2011) Using MODFLOW and GIS to assess changes in groundwater dynamics in response to water saving measures in irrigation districts of the Upper Yellow River Basin. Water Resour Manag 25:2035–2059. doi:10.1007/s11269-011-9793-2

    Article  Google Scholar 

  • Yeh HF, Lee CH, Chen JF, Chen WP (2007) Estimation of groundwater recharge using water balance model. Water Resour 34(2):153–162

    Article  Google Scholar 

  • Zhang XY, Gong JD, Zhao X, Zhou MX (2005) The change of land cover/land use in Ejina oasis over 20 years. Adv Earth Sci 20(12):1300–1305

    Google Scholar 

  • Zhang X, Zhang L, He Ch, Li J, Jiang Y, Ma L (2014) Quantifying the impacts of land use/land cover change on groundwater depletion in Northwestern China—a case study of the Dunhuang oasis. Agric Water Manag 146:270–279

    Article  Google Scholar 

  • Zhao C, Wang Y, Chen X, Li B (2005) Simulation of the effects of groundwater level on vegetation change by combining FEFLOW software. Ecol Model 187:341–351

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to National Cartographic Center of Iran (NCC), Forests, Range and Watershed Management Organization (FRWO), Meteorological Organization (WSIMO), Iran Water Resources Management Company (IWRMC), and Hamedan Regional Water Co. (HMRW) for their collaboration by making available literature and data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Rafiei Emam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiei Emam, A., Kappas, M., Akhavan, S. et al. Estimation of groundwater recharge and its relation to land degradation: case study of a semi-arid river basin in Iran. Environ Earth Sci 74, 6791–6803 (2015). https://doi.org/10.1007/s12665-015-4674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4674-2

Keywords

Navigation