Environmental Earth Sciences

, Volume 74, Issue 3, pp 1997–2008 | Cite as

Variations of the glacier mass balance and lake water storage in the Tarim Basin, northwest China, over the period of 2003–2009 estimated by the ICESat-GLAS data

  • Ninglian Wang
  • Hongbo WuEmail author
  • Yuwei Wu
  • Anan Chen
Thematic Issue


Accurately estimating the changes in glacier mass balance and water storage in lakes and reservoirs is critical to studying the water cycle in the inland river basin in northwest China. We used high-resolution satellite images to analyze the changes in water surface area of lakes and reservoirs in Tarim Basin, and used the ICESat-GLAS altimeter data to estimate their water level changes and the glacier mass balance change, over the period 2003–2009. The results showed the average glacier thinning in the entire basin was at a rate of 0.34 ± 0.25 m w.e./year equivalent height of water, which means that the glacier mass balance occurred −6.8 ± 1.2 km3 water equivalent over the study period. However, the mean water level of nearby lakes decreased by 0.41 ± 0.2 m even with the influx of glacial melt water, indicating that the lake level declines were caused by the withdrawal of lake water for human activities.


ICESat-GLAS Glacier mass balance Elevation change Tarim Basin Lakes water storage 



This study was completed with the support of the National Natural Science Foundation Project of China (Grant No. 41190084) and the Strategic Science and Technology Program of Chinese Academy of Sciences (grant No. XDB03030204). We thank Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS, HYDROWEB: in Toulouse for providing the Bosten, Top lakes monitoring data, as well as the U.S. Geological Survey providing hydrographic mapping product with HydroSHEDS data ( and Landsat TM/ETM imageries ( Furthermore, the authors should like to thank four anonymous reviewers and editors for these massive suggestions and various efforts. We also thank Prof. F.G. Lemoine from Planetary Geodynamics Laboratory, NASA GSFC for giving the technological supports on the times series of lake water level weekly using GLAS altimeter data from 2003 to 2009 for ITRF2008 information. We thank J.F. Crétaux for having available ERS-2/ENVISAT altimetry data of lakes on the studies.


  1. Abdallah H, Bailly J-S, Baghdadi N, Lemarquand N (2011) Improving the assessment of ICESat water altimetry accuracy accounting for autocorrelation. ISPRS J Photogramm Remote Sens 66(6):833–844. doi: 10.1016/j.isprsjprs.2011.09.002 CrossRefGoogle Scholar
  2. Abshire JB, Sun X, Riris H, Sirota JM, McGarry JF, Palm S, Yi D, Liiva P (2005) Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On-orbit measurement performance. Geophys Res Lett 32(21):L21S02. doi: 10.1029/2005GL024028 Google Scholar
  3. Alsdorf DE, Rodríguez E, Lettenmaier DP (2007) Measuring surface water from space. Rev Geophys 45(2):RG2002. doi: 10.1029/2006RG000197 Google Scholar
  4. Baghdadi N, Lemarquand N, Abdallah H, Bailly JS (2011) The relevance of GLAS/ICESat elevation data for the monitoring of river networks. Remote Sens 3(4):708–720. doi: 10.3390/rs3040708 CrossRefGoogle Scholar
  5. Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. In: Diaz H (ed) Climate variability and change in high elevation regions: past, present & future. Advances in global change research, vol 15. Springer, Netherlands, pp 5–31CrossRefGoogle Scholar
  6. Biemans H, Haddeland I, Kabat P, Ludwig F, Hutjes RWA, Heinke J, von Bloh W, Gerten D (2011) Impact of reservoirs on river discharge and irrigation water supply during the 20th century. Water Resour Res 47(3):W03509. doi: 10.1029/2009WR008929 Google Scholar
  7. Borsa AA, Moholdt G, Fricker HA, Brunt KM (2014) A range correction for ICESat and its potential impact on ice-sheet mass balance studies. Cryosphere 8(2):345–357. doi: 10.5194/tc-8-345-2014 CrossRefGoogle Scholar
  8. Calmant S, Seyler F (2006) Continental surface waters from satellite altimetry. CR Geosci 338(14–15):1113–1122. doi: 10.1016/j.crte.2006.05.012 CrossRefGoogle Scholar
  9. Calmant S, Seyler F, Cretaux J (2008) Monitoring continental surface waters by satellite altimetry. Surv Geophys 29(4–5):247–269. doi: 10.1007/s10712-008-9051-1 CrossRefGoogle Scholar
  10. Carabajal CC, Harding DJ (2005) ICESat validation of SRTM C-band digital elevation models. Geophys Res Lett 32(22):2. doi: 10.1029/2005GL023957 Google Scholar
  11. Chen Y, Takeuchi K, Xu C, Chen Y, Xu Z (2006) Regional climate change and its effects on river runoff in the Tarim Basin, China. Hydrol Process 20(10):2207–2216. doi: 10.1002/hyp.6200 CrossRefGoogle Scholar
  12. Crétaux J-F, Birkett C (2006) Lake studies from satellite radar altimetry. CR Geosci 338(14–15):1098–1112. doi: 10.1016/j.crte.2006.08.002 CrossRefGoogle Scholar
  13. Crétaux JF, Jelinski W, Calmant S, Kouraev A, Vuglinski V, Bergé-Nguyen M, Gennero MC, Nino F, Abarca Del Rio R, Cazenave A, Maisongrande P (2011) SOLS: a lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv Space Res 47(9):1497–1507. doi: 10.1016/j.asr.2011.01.004 CrossRefGoogle Scholar
  14. Da Silva JS, Seyler F, Calmant S, Rotunno Filho OC, Roux E, Araújo AAM, Guyot JL (2011) Water level dynamics of Amazon wetlands at the watershed scale by satellite altimetry. Int J Remote Sens 33(11):3323–3353. doi: 10.1080/01431161.2010.531914 CrossRefGoogle Scholar
  15. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270(1–2):105–134. doi: 10.1016/S0022-1694(02)00283-4 CrossRefGoogle Scholar
  16. Ersi K, Chaohai L, Zichu X, Xin L, Yongping S (2010) Assessment of glacier water resources based on the glacier inventory of China. Ann Glaciol 50(53):104–110. doi: 10.3189/172756410790595822 CrossRefGoogle Scholar
  17. Ewert H, Groh A, Dietrich R (2012) Volume and mass changes of the Greenland ice sheet inferred from ICESat and GRACE. J Geodyn 59–60:111–123. doi: 10.1016/j.jog.2011.06.003 CrossRefGoogle Scholar
  18. Frappart F, Calmant S, Cauhopé M, Seyler F, Cazenave A (2006a) Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sens Environ 100(2):252–264. doi: 10.1016/j.rse.2005.10.027 CrossRefGoogle Scholar
  19. Frappart F, Minh KD, L’Hermitte J, Cazenave A, Ramillien G, Le Toan T, Mognard-Campbell N (2006b) Water volume change in the lower Mekong from satellite altimetry and imagery data. Geophys J Int 167(2):570–584. doi: 10.1111/j.1365-246X.2006.03184.x CrossRefGoogle Scholar
  20. Gao H, Yao Y (2005) Quantitative effect of human activities on water level change of bosten lake in recent 50 years. Sci Geogr Sinica 25(3):305–309 (in Chinese) Google Scholar
  21. Gao X, Ye B, Zhang S, Qiao C, Zhang X (2010) Glacier runoff variation and its influence on river runoff during 1961–2006 in the Tarim River Basin, China. Sci Chin Earth Sci 53(6):880–891. doi: 10.1007/s11430-010-0073-4 CrossRefGoogle Scholar
  22. Hao X, Chen Y, Xu C, Li W (2008) Impacts of climate change and human activities on the surface runoff in the Tarim River Basin over the last fifty years. Water Resour Manage 22(9):1159–1171. doi: 10.1007/s11269-007-9218-4 CrossRefGoogle Scholar
  23. Hirt C, Marti U, Bürki B, Featherstone WE (2010) Assessment of EGM2008 in Europe using accurate astrogeodetic vertical deflections and omission error estimates from SRTM/DTM2006.0 residual terrain model data. J Geophys Res Solid Earth 115(B10):B10404. doi: 10.1029/2009JB007057 CrossRefGoogle Scholar
  24. Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385. doi: 10.1126/science.1183188 CrossRefGoogle Scholar
  25. Jing Z, Jiao K, Yao T, Wang N, Li Z (2006) Mass balance and recession of Ürümqi glacier No. 1, Tien Shan, China, over the last 45 years. Ann Glaciol 43(1):214–217. doi: 10.3189/172756406781811899 CrossRefGoogle Scholar
  26. Jones PD, Hulme M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16(4):361–377. doi: 10.1002/(SICI)1097-0088(199604)16:4<361:AID-JOC53>3.0.CO;2-F CrossRefGoogle Scholar
  27. Karthe D, Chalov S, Borchardt D (2015) Water resources and their management in central Asia in the early twenty first century: status, challenges and future prospects. Environ Earth Sci 73(2):487–499. doi: 10.1007/s12665-014-3789-1 CrossRefGoogle Scholar
  28. Kropáček J, Braun A, Kang S, Feng C, Ye Q, Hochschild V (2012) Analysis of lake level changes in Nam Co in central Tibet utilizing synergistic satellite altimetry and optical imagery. Int J Appl Earth Obs Geoinf 17:3–11. doi: 10.1016/j.jag.2011.10.001 CrossRefGoogle Scholar
  29. Kundzewicz ZW, Merz B, Vorogushyn S, Hartmann H, Duethmann D, Wortmann M, Huang S, Su B, Jiang T, Krysanova V (2015) Analysis of changes in climate and river discharge with focus on seasonal runoff predictability in the Aksu River Basin. Environ Earth Sci 73(2):501–516. doi: 10.1007/s12665-014-3137-5 CrossRefGoogle Scholar
  30. Landerer FW, Swenson SC (2012) Accuracy of scaled GRACE terrestrial water storage estimates. Water Resour Res 48(4):W04531. doi: 10.1029/2011WR011453 Google Scholar
  31. Lemoine FG, Zelensky NP, Chinn DS, Pavlis DE, Rowlands DD, Beckley BD, Luthcke SB, Willis P, Ziebart M, Sibthorpe A, Boy JP, Luceri V (2010) Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2. Adv Space Res 46(12):1513–1540. doi: 10.1016/j.asr.2010.05.007 CrossRefGoogle Scholar
  32. Li X, Williams MW (2008) Snowmelt runoff modelling in an arid mountain watershed, Tarim Basin, China. Hydrol Process 22(19):3931–3940. doi: 10.1002/hyp.7098 CrossRefGoogle Scholar
  33. Li X, Xu L, Tian X, Kong D (2012) Terrain slope estimation within footprint from ICESat/GLAS waveform: model and method. J Appl Remote Sens 6(1):063534–063534. doi: 10.1117/1.JRS.6.063534 CrossRefGoogle Scholar
  34. Ligtenberg SRM, Helsen MM, van den Broeke MR (2011) An improved semi-empirical model for the densification of Antarctic firn. Cryosphere 5(4):809–819. doi: 10.5194/tc-5-809-2011 CrossRefGoogle Scholar
  35. Lisano ME, Schutz BE (2001) Arcsecond-level pointing calibration for ICESat laser altimetry of ice sheets. J Geodesy 75(2–3):99–108. doi: 10.1007/s001900000156 CrossRefGoogle Scholar
  36. Liu S, Ding Y, Shangguan D, Zhang Y, Li J, Han H, Wang J, Xie C (2006) Glacier retreat as a result of climate warming and increased precipitation in the Tarim river basin, northwest China. Ann Glaciol 43(1):91–96. doi: 10.3189/172756406781812168 CrossRefGoogle Scholar
  37. Liu T, Willems P, Pan XL, Bao AM, Chen X, Veroustraete F, Dong QH (2011) Climate change impact on water resource extremes in a headwater region of the Tarim basin in China. Hydrol Earth Syst Sci 15(11):3511–3527. doi: 10.5194/hess-15-3511-2011 CrossRefGoogle Scholar
  38. Llovel W, Becker M, Cazenave A, Crétaux J-F, Ramillien G (2010) Global land water storage change from GRACE over 2002–2009; Inference on sea level. CR Geosci 342(3):179–188. doi: 10.1016/j.crte.2009.12.004 CrossRefGoogle Scholar
  39. Llovel W, Becker M, Cazenave A, Jevrejeva S, Alkama R, Decharme B, Douville H, Ablain M, Beckley B (2011) Terrestrial waters and sea level variations on interannual time scale. Global Planet Change 75(1–2):76–82. doi: 10.1016/j.gloplacha.2010.10.008 CrossRefGoogle Scholar
  40. Los SO, Rosette JAB, Kljun N, North PRJ, Chasmer L, Suárez JC, Hopkinson C, Hill RA, van Gorsel E, Mahoney C, Berni JAJ (2012) Vegetation height and cover fraction between 60°S and 60°N from ICESat GLAS data. Geosci Model Develop 5(2):413–432. doi: 10.5194/gmd-5-413-2012 CrossRefGoogle Scholar
  41. McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432. doi: 10.1080/01431169608948714 CrossRefGoogle Scholar
  42. Medina CE, Gomez-Enri J, Alonso JJ, Villares P (2008) Water level fluctuations derived from ENVISAT Radar Altimeter (RA-2) and in situ measurements in a subtropical waterbody: Lake Izabal (Guatemala). Remote Sens Environ 112(9):3604–3617. doi: 10.1016/j.rse.2008.05.001 CrossRefGoogle Scholar
  43. Moiwo JP, Yang Y, Tao F, Lu W, Han S (2011) Water storage change in the Himalayas from the Gravity Recovery and Climate Experiment (GRACE) and an empirical climate model. Water Resour Res 47(7):W07521. doi: 10.1029/2010WR010157 Google Scholar
  44. Nuth C, Kääb A (2011) Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change. Cryosphere 5(1):271–290. doi: 10.5194/tc-5-271-2011 CrossRefGoogle Scholar
  45. Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res Solid Earth 117(B4):B04406. doi: 10.1029/2011JB008916 CrossRefGoogle Scholar
  46. Phan VH, Lindenbergh R, Menenti M (2012) ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. Int J Appl Earth Obs Geoinf 17:12–22. doi: 10.1016/j.jag.2011.09.015 CrossRefGoogle Scholar
  47. Phan VH, Lindenbergh RC, Menenti M (2014) Orientation dependent glacial changes at the Tibetan Plateau derived from 2003–2009 ICESat laser altimetry. Cryosphere Discuss 8(3):2425–2463. doi: 10.5194/tcd-8-2425-2014 CrossRefGoogle Scholar
  48. Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51. doi: 10.1038/nature09364 CrossRefGoogle Scholar
  49. Qi F, Wei L, Jianhua S, Yonghong S, Yewu Z, Zongqiang C, Haiyang X (2005) Environmental effects of water resource development and use in the Tarim River basin of northwestern China. Environ Geol 48(2):202–210. doi: 10.1007/s00254-005-1288-0 CrossRefGoogle Scholar
  50. Raup B, Kääb A, Kargel JS, Bishop MP, Hamilton G, Lee E, Paul F, Rau F, Soltesz D, Khalsa SJS, Beedle M, Helm C (2007a) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) Project. Comput Geosci 33(1):104–125. doi: 10.1016/j.cageo.2006.05.015 CrossRefGoogle Scholar
  51. Raup B, Racoviteanu A, Khalsa SJS, Helm C, Armstrong R, Arnaud Y (2007b) The GLIMS geospatial glacier database: A new tool for studying glacier change. Glob Planet Change 56(1–2):101–110. doi: 10.1016/j.gloplacha.2006.07.018 CrossRefGoogle Scholar
  52. Santos da Silva J, Calmant S, Seyler F, Rotunno Filho OC, Cochonneau G, Mansur WJ (2010) Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sens Environ 114(10):2160–2181. doi: 10.1016/j.rse.2010.04.020 CrossRefGoogle Scholar
  53. Schutz BE, Zwally HJ, Shuman CA, Hancock D, DiMarzio JP (2005) Overview of the ICESat Mission. Geophys Res Lett 32(21):L21S01. doi: 10.1029/2005GL024009 Google Scholar
  54. Song C, Huang B, Richards K, Ke L, Hien Phan V (2014) Accelerated lake expansion on the Tibetan Plateau in the 2000s: induced by glacial melting or other processes? Water Resour Res 50(4):3170–3186. doi: 10.1002/2013WR014724 CrossRefGoogle Scholar
  55. Sørensen LS, Simonsen SB, Nielsen K, Lucas-Picher P, Spada G, Adalgeirsdottir G, Forsberg R, Hvidberg CS (2011) Mass balance of the Greenland ice sheet (2003-2008) from ICESat data—the impact of interpolation, sampling and firn density. Cryosphere 5(1):173–186. doi: 10.5194/tc-5-173-2011 CrossRefGoogle Scholar
  56. Sorg A, Bolch T, Stoffel M, Solomina O, Beniston M (2012) Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nature Climate Change 2(10):725–731. doi: 10.1038/nclimate1592 CrossRefGoogle Scholar
  57. Verpoorter C, Kutser T, Seekell DA, Tranvik LJ (2014) A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41(18):GL060641. doi: 10.1002/2014GL060641 Google Scholar
  58. Wang X, Gong P, Zhao Y, Xu Y, Cheng X, Niu Z, Luo Z, Huang H, Sun F, Li X (2013) Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sens Environ 132:131–144. doi: 10.1016/j.rse.2013.01.005 CrossRefGoogle Scholar
  59. Werth S, Güntner A (2010) Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrol Earth Syst Sci 14(1):59–78. doi: 10.5194/hess-14-59-2010 CrossRefGoogle Scholar
  60. Wisser D, Frolking S, Hagen S, Bierkens MFP (2013) Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resour Res 49(9):5732–5739. doi: 10.1002/wrcr.20452 CrossRefGoogle Scholar
  61. Wu H, Wang N, Guo Z, Wu Y (2014a) Regional glacier mass loss estimated by ICESat-GLAS data and SRTM digital elevation model in the West Kunlun Mountains, Tibetan Plateau, 2003–2009. J Appl Remote Sens 8(1):083515–083515. doi: 10.1117/1.JRS.8.083515 CrossRefGoogle Scholar
  62. Wu H, Wang N, Jiang X, Guo Z (2014b) Variations in water level and glacier mass balance in Nam Co lake, Nyainqentanglha range, Tibetan Plateau, based on ICESat data for 2003-09. Ann Glaciol 55(66):239–247. doi: 10.3189/2014AoG66A100 CrossRefGoogle Scholar
  63. Yaning C, Changchun X, Xingming H, Weihong L, Yapeng C, Chenggang Z, Zhaoxia Y (2009) Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China. Quat Int 208(1–2):53–61. doi: 10.1016/j.quaint.2008.11.011 CrossRefGoogle Scholar
  64. Ye B, Yang D, Jiao K, Han T, Jin Z, Yang H, Li Z (2005) The Urumqi River source Glacier No. 1, Tianshan, China: changes over the past 45 years. Geophys Res Lett 32(21):L21504. doi: 10.1029/2005GL024178 CrossRefGoogle Scholar
  65. Zelensky N, Berthias J-P, Lemoine F (2006) DORIS time bias estimated using Jason-1, TOPEX/Poseidon and ENVISAT orbits. J Geodesy 80(8–11):497–506. doi: 10.1007/s00190-006-0075-3 CrossRefGoogle Scholar
  66. Zelensky N, Lemoine F, Chinn D, Melachroinos S, Beckley B, Beall J, Bordyugov O (2014) Estimated SLR station position and network frame sensitivity to time-varying gravity. J Geodesy 88(6):517–537. doi: 10.1007/s00190-014-0701-4 CrossRefGoogle Scholar
  67. Zhang Q, Xu C-Y, Tao H, Jiang T, Chen Y (2010) Climate changes and their impacts on water resources in the arid regions: a case study of the Tarim River basin, China. Stoch Environ Res Risk Assess 24(3):349–358. doi: 10.1007/s00477-009-0324-0 CrossRefGoogle Scholar
  68. Zhang G, Xie H, Kang S, Yi D, Ackley SF (2011) Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens Environ 115(7):1733–1742. doi: 10.1016/j.rse.2011.03.005 CrossRefGoogle Scholar
  69. Zhang S, Gao H, Naz BS (2014) Monitoring reservoir storage in South Asia from multisatellite remote sensing. Water Resour Res 50(11):8927–8943. doi: 10.1002/2014WR015829 CrossRefGoogle Scholar
  70. Zhao R, Chen Y, Shi P, Zhang L, Pan J, Zhao H (2013a) Land use and land cover change and driving mechanism in the arid inland river basin: a case study of Tarim River, Xinjiang, China. Environ Earth Sci 68(2):591–604. doi: 10.1007/s12665-012-1763-3 CrossRefGoogle Scholar
  71. Zhao Y, Li H, Huang A, He Q, Huo W, Wang M (2013b) Relationship between thermal anomalies in Tibetan Plateau and summer dust storm frequency over Tarim Basin, China. J Arid Land 5(1):25–31. doi: 10.1007/s40333-013-0138-2 CrossRefGoogle Scholar
  72. Zwally HJ, Schutz B, Abdalati W, Abshire J, Bentley C, Brenner A, Bufton J, Dezio J, Hancock D, Harding D, Herring T, Minster B, Quinn K, Palm S, Spinhirne J, Thomas R (2002) ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J Geodyn 34(3–4):405–445. doi: 10.1016/S0264-3707(02)00042-X CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ninglian Wang
    • 1
    • 2
  • Hongbo Wu
    • 3
    • 4
    Email author
  • Yuwei Wu
    • 3
    • 4
  • Anan Chen
    • 3
    • 4
  1. 1.Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.CAS Center for Excellence in Tibetan Plateau Earth SciencesBeijingPeople’s Republic of China
  3. 3.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouPeople’s Republic of China
  4. 4.University of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations