Environmental Earth Sciences

, Volume 74, Issue 7, pp 6339–6351 | Cite as

Evolution of the mechanical behaviour of limestone subjected to freeze–thaw cycles

  • Charlotte Walbert
  • Javad Eslami
  • Anne-Lise Beaucour
  • Ann Bourges
  • Albert Noumowe
Original Article


The frost weathering of three French limestones [Lens (LS), Migné (MI) and Savonnières (SA)], with different physico-mechanical properties, during the freeze–thaw cycles was studied. The weathering evolution in stone samples undergoing the freeze–thaw cycles was monitored by measurement of following properties: total porosity, P-wave velocity, static elastic moduli, uniaxial compressive strength and toughness. The thermo-mechanical behaviour of stones was also studied by measurement of the strain and temperature (in surface and centre of sample) during one freeze–thaw cycle. These results, mainly the weathering observed for SA(73) with a degree of saturation of 73 % and a lack of weathering for LS with a degree of saturation of 90 %, show that it is impossible to define a unique critical degree of saturation for different stones and this varies from stone to stone. The shrinkage and (or) the expansion of samples during the crystallization phase were determined. The shrinkage is related to the migration of water away from tiny pores towards larger cavities where ice has already formed. The expansion is attributed on the one hand to the rise in pressure that comes from the water which flows towards the ice front and on the other hand to the relatively important quantity of ice formed when thermal contraction and the contraction due to migration dominate. The elastic moduli (static moduli and dynamic moduli) was found to be affected the most by frost weathering and is a real sensor of first micro-crack initiation, whereas the uniaxial compressive strength and the porosity were found to be affected the least.


Frost weathering Elastic moduli Critical saturation, limestone 



This research was carried out thanks to subsidies from the “Fondation des sciences du Patrimoine, Labex PATRIMA” and to Rocamat and France Pierre. The authors express their gratitude to these organizations.


  1. Allison RJ (1988) A non-destructive method of determining rock strength. Earth Surf Proc Land 13:729–736CrossRefGoogle Scholar
  2. Alomari A, Brunetaud X, Beck K, Al-Mukhtar M (2013) Experimental study on the role of freezing-thawing in the degradation of stones in the Castle of Chambord. In: Built Heritage Monitoring Conservation ManagementGoogle Scholar
  3. Bellanger M, Homand F, Remy JM (1993) Water behaviour in limestones as a function of pores structure: application to frost resistance of some Lorraine limestones. Eng Geol 36(1993):99–108CrossRefGoogle Scholar
  4. Chen TC, Yeung MR, Mori N (2004) Effect of water saturation on deterioration of welded tuff due to freeze-thaw action. Cold Reg Sci Technol 38:127–136CrossRefGoogle Scholar
  5. Cooks J (1983) Geomorphic response to rock strength and elasticity. Zeitschrift für Geomorphologie 27:483–493Google Scholar
  6. De Witte E, Vergès Belmin V, De Clercq H, Van Hees R, Miquel A, Bromblet P, Brocken H, Cardani G, Tedeschi C, Binda L, Baronio G, Lubelli B, Garavaglia E (2001) Salt Compatibility of Surface Treatments (SCOST): Final Report. European Contract ENV4-CT98-0710. Brussels: KIK-IRPAGoogle Scholar
  7. Dessandier D, Auger P, Haas H, Hugues G (2000) Guide méthodologique de sélection des pierres des monuments en termes de durabilité et compatibilité. BRGM/RP-50137-FRGoogle Scholar
  8. Eslami J, Grgic D, Hoxha D (2010) Estimation of the damage of a porous limestone from continuous (P- and S-) wave velocity measurements under uniaxial loading and different hydrous conditions. Geophys J Int 183(3):1362–1375CrossRefGoogle Scholar
  9. Everett DH (1961) The thermodynamics of frost damage to porous solids. Trans Faraday Soc 57:1541–1551CrossRefGoogle Scholar
  10. Fagerlund G (1993) Frost resistance of high performance concrete - Some theoretical Considerations. Lund Institute of Technology, Division of Building Materials, Report TVBM-3056, LundGoogle Scholar
  11. Hamès V, Lautridou JP, Ozer A, Pissart A (1987) Variations dilatométriques de roches soumises à des cycles “humidification-séchage”. Géogr Phys Quat 41:345–354Google Scholar
  12. Hirschwald J (1908) Die Prüfung der Natürlichen Bausteine auf Ihre Wetterbestandigkeit. Verlag von Wilhelm Ernst & Sohn, Berlin, p 675Google Scholar
  13. Letavernier G (1984) La gélivité des roches calcaires, relation avec la morphologie du milieu poreux. Thèse de troisième cycle, Mention Géographie, CaenGoogle Scholar
  14. Litvan GG (1978) Freeze–Thaw durability of porous building materials, in Durability of building materials and components. Special Technical Publication STP 691. American Society for Testing and Materials, p 455–463Google Scholar
  15. Marco Castaño LD, Martínez-Martínez J, Benavente D, García-del-Cura MA (2010) Failures in the standard characterization of carbonate dimension stone durability during freeze-thaw testing. Global Stone CongressGoogle Scholar
  16. NF EN 12371 (2010) Natural stone test methods—determination of frost resistanceGoogle Scholar
  17. NF EN 14579 (2005) Natural stone test methods—determination of sound speed propagationGoogle Scholar
  18. NF EN 1926 (2007) Natural stone test methods—determination of uniaxial compressive strengthGoogle Scholar
  19. NF EN 1936 (2007) Natural stone test methods—determination of real density and apparent density, and total and open porosityGoogle Scholar
  20. NF B 10-504 (1973) Quarry products—limestone—measuring he water absorption coefficientGoogle Scholar
  21. Pissart A, Lautridou J-P (1984) Variations de longueur de cylindres de pierre de Caen (calcaire bathonien) sous l’effet de séchage et d’humidification. Z Geomorphol Suppl 49:111–116Google Scholar
  22. Powers TC, Helmuth RA (1953) Theory of volume changes in hardened Portland cement paste during freezing. Proceedings of the Highway Rese. Board, N°32, p. 285–297Google Scholar
  23. Prick A (1995) Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles. Catena 25:7–20CrossRefGoogle Scholar
  24. Prick A (1997) Critical degree of saturation as a threshold moisture level in frost weathering of limestones. Permafrost Periglac Proc 8:91–99CrossRefGoogle Scholar
  25. Ruedrich J, Kirchner D, Siegesmund S (2011) Physical weathering of building stones induced by freeze–thaw action: a laboratory long-term study. Environ Earth Sci 63:1573–1586CrossRefGoogle Scholar
  26. Saad A, Guédon S, Martineau F (2010) Microstructural weathering of sedimentary rocks by freeze–thaw cycles: experimental study of state and transfer parameters. C R Geosci 342:197–203CrossRefGoogle Scholar
  27. Stockhausen N (1981) Die Dilatation hochporöser Festkörper bei Wasseraufnahme und Eisbildung. PhD, TU München, p 163Google Scholar
  28. Tan X, Chen W, Yang J, Cao J (2011) Laboratory investigations on the mechanical properties degradation of granite under freeze–thaw cycles. Cold Reg Sci Technol 68:130–138CrossRefGoogle Scholar
  29. Tourenq C (1970) La gélivité des roches, application aux granulats. Rapport de Recherche N°6 LCPCGoogle Scholar
  30. Tutluoglu L, Keles C (2011) Mode I fracture toughness determination with straight notched disk bending method. Int J Rock Mech Min Sci 48:1248–1261CrossRefGoogle Scholar
  31. Vlahou I, Worster MG (2010) Ice growth in a spherical cavity of a porous medium. J Glaciol 56(196):271–277CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Charlotte Walbert
    • 1
  • Javad Eslami
    • 1
  • Anne-Lise Beaucour
    • 1
  • Ann Bourges
    • 2
  • Albert Noumowe
    • 1
  1. 1.L2MGC, Université de Cergy-PontoiseNeuville-sur-OiseFrance
  2. 2.LRMHChamps-sur-MarneFrance

Personalised recommendations