Advertisement

Environmental Earth Sciences

, Volume 74, Issue 7, pp 6001–6015 | Cite as

Groundwater balance estimation in karst by using simple conceptual rainfall–runoff model

  • Ivana ŽeljkovićEmail author
  • Ana Kadić
Original Article

Abstract

The objective of this work is the study of Opačac karst spring which geographically lies in Dalmatia (Croatia). Numerous studies have been carried out in karst aiming the investigation of groundwater regime. The karst spring hydrograph can reflect the groundwater regime and consequently the analysis is based on them. A simple conceptual rainfall–runoff model is used for the estimation of groundwater balance components including the influences of time-invariant catchment boundaries (Jukić and Denić-Jukić 2009). The proposed parameter estimation procedure merges the soil-moisture balance and the groundwater balance approaches to obtain the complete groundwater budget. The effective rainfall is calculated by using mathematical model based on soil-moisture balance equations, i.e. Palmer’s fluid mass balance method. The parameters of model of effective rainfall are determined by using simple conceptual rainfall–runoff model consisting of two linear reservoirs representing the fast and slow flow component of the recession. The weight coefficient between the fast and slow component is determined by using base flow index analysis of hydrograph. Recession coefficient of the slow flow component and the weight coefficient are determined from hydrograph analysis. Available data from nearby meteorological station includes daily average discharge, the amount of precipitation, the average temperature and the humidity from 1995 to 2010. The average catchment area is also estimated with the average yearly runoff deficit using Turc’s method and compared with the values obtained from the application of the rainfall–runoff model. Nash–Sutcliffe model efficiency, root mean square error and Pearson’s correlation coefficient for simulated hydrograph are applied to assess the predictive power of model. Calculated groundwater balance shows that the Opačac spring aquifer contains a significant storage capacity. The application of series of linear reservoirs is a classical and common technique, but the proposed simple approach enables the estimation of the components of groundwater balance in karst areas.

Keywords

Karst hydrology Rainfall–runoff model Groundwater recharge Water balance 

References

  1. Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13(1):148–160CrossRefGoogle Scholar
  2. Bojanić L, Ivičić D, Batić V (1981) Hidrogeologija Imotskog polja s osvrtom na značaj u regionalnom smislu [Hydrogeology of Imotski Polje with review on regional significance]. Geološki Vjesnik 34:127–135Google Scholar
  3. Bonacci O, Roje-Bonacci T (2008) Water losses from the Ričice reservoir built in the Dinaric karst. Eng Geol 99(3–4):121–127. doi: 10.1016/j.enggeo.2007.11.014 CrossRefGoogle Scholar
  4. Bonacci O, Željković I, Galić A (2013) Karst rivers’ particularity: an example from Dinaric karst (Croatia/Bosnia and Herzegovina). Environ Earth Sci 70:963–974CrossRefGoogle Scholar
  5. Boussinesq J (1904) Recherches theoretique sur l’ecoulement des nappes d’eau infiltrees dans le sol et sur le debit des sources. J Math Pure Appl 10(5th Series):5–78Google Scholar
  6. Brodie RS, Hostetler S (2005) A review of techniques for analysing base flow from stream hydrographs. In: Proceedings of the NZHS-IAH-NZSSS 2005 conference, 28 November–2 December, AucklandGoogle Scholar
  7. Brušková V (2008) Assessment of the base flow in the upper part of Torysa river catchment. Slovak J Civ Eng 2008(2):8–14Google Scholar
  8. Butscher C, Huggenberger P (2008) Intrinsic vulnerability assessment in karst areas: a numerical modeling approach. Water Resour Res 44:W03408. doi: 10.1029/2007WR006277 Google Scholar
  9. Charlier JB, Bertrand C, Mudry J (2012) Conceptual hydrogeological model of flow and transport of dissolved organic carbon in a small Jura karst system. J Hydrol 460–461:52–64CrossRefGoogle Scholar
  10. Denić-Jukić V, Jukić D (2003) Composite transfer functions for karst aquifers. J Hydrol 274:80–94CrossRefGoogle Scholar
  11. Eagleman JR (1967) Pan evaporation, potential and actual evapotranspiration. J Appl Meteorol 6:482–488CrossRefGoogle Scholar
  12. Eckhardt K (2005) How to construct recursive digital filters for base flow separation. Hydrol Process 19:507–515CrossRefGoogle Scholar
  13. Eisenlohr L, Kiraly L, Bouzelboudjen M, Rossier Y (1997a) A numerical simulation as a tool for checking the interpretation of karst springs hydrographs. J Hydrol 193:306–315CrossRefGoogle Scholar
  14. Eisenlohr L, Bouzelboudjen M, Kiraly L, Rossier Y (1997b) Numerical versus statistical modelling of natural response of a karst hydrogeological system. J Hydrol 202:244–262CrossRefGoogle Scholar
  15. Fleury P, Plagnes V, Bakalowicz M (2007) Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse (South of France). J Hydrol 345:38–49CrossRefGoogle Scholar
  16. Goldscheider N, Drew D, Worthington S (2007). Introduction. In: Goldscheider N, Drew D (eds), Methods in karst hydrogeology. Taylor & Francis, London. Int Contrib Hydrogeol 26: 1–8Google Scholar
  17. Halihan T, Wicks CM (1998) Modeling of storm responses in conduit flow aquifers with reservoirs. J Hydrol 208:82–91CrossRefGoogle Scholar
  18. Hartmann A, Kralik M, Humer F, Lange J, Weiler M (2012) Identification of a karst system’s intrinsic hydrodynamic parameters: upscaling from single springs to the whole aquifer. Environ Earth Sci 65:2377–2389CrossRefGoogle Scholar
  19. Hartmann A, Barberá JA, Lange J, Andreo B, Weiler M (2013) Progress in the hydrologic simulation of time variant recharge areas of karst systems—exemplified at a karst spring in Southern Spain. Adv Water Resour 54:149–160. doi: 10.1016/j.advwatres.2013.01.010 CrossRefGoogle Scholar
  20. Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys. doi: 10.1002/2013RG000443 Google Scholar
  21. Herak M (1986) A new concept of geotectonics of the Dinarides. Acta Geol 16:1–42Google Scholar
  22. Hisdal H, Tallaksen LM, Clausen B, Peters E, Gustard A (2004) Hydrological drought characteristics. In: Tallaksen LM, van Lanen HAJ (eds) Hydrological drought—processes and estimation methods for stream flow and groundwater, vol 48., Developments in water sciencesElsevier, Amsterdam, pp 139–198Google Scholar
  23. Horton RE (1933) The role of infiltration in the hydrological cycle. Trans Am Geophys Union 14:446–460CrossRefGoogle Scholar
  24. Johannet A, Mangin A, D’Hulst D (1994) Subterranean water infiltration modelling by neural networks: use of water source flow. ICANN ‘94—proceedings of the international conference on artificial neural networks, Sorrento, Italy, 26–29 May 1994. Spring, London, pp 1033–1036Google Scholar
  25. Jukić D, Denić-Jukić V (2004) A frequency domain approach to groundwater recharge estimation in karst. J Hydrol 289(1–4):95–110. doi: 10.1016/j.jhydrol.2003.11.005 Google Scholar
  26. Jukić D, Denić-Jukić V (2006) Nonlinear kernel functions for karst aquifers. J Hydrol 328:360–374CrossRefGoogle Scholar
  27. Jukić D, Denić-Jukić V (2009) Groundwater balance estimation in karst by using a conceptual rainfall–runoff model. J Hydrol 373(2009):302–315Google Scholar
  28. Kiraly L, Perrochet P, Rossier Y (1995) Effect of the epikarst on hydrograph of karst springs: a numerical approach. Bull Cent Hydrogeol Neuchatel 14:199–220Google Scholar
  29. Klemeš V (1986) Operational testing of hydrological simulation models. Hydrol Sci J 31(1):13–24CrossRefGoogle Scholar
  30. Kresic N, Stevanovic Z (2010) Groundwater hydrology of springs: engineering, theory, management, and sustainability. Butterworth-Heinemann, Elsevier, Jordan Hill, Oxford, pp 312–316Google Scholar
  31. Kuhta M, Brkić Ž, Stroj A (2012) Hydrodynamic characteristics of Mt. Biokovo foothill springs in Croatia. Geol Croat 65(1):41–51. doi: 10.4154/gc.2012.03 CrossRefGoogle Scholar
  32. Kurtulus B, Razack M (2006) Evaluation of the ability of an artificial neural network model to simulate the input–output responses of a large karstic aquifer: the La Rochefoucauld aquifer (Charente, France). Hydrogeol J 15:241–254CrossRefGoogle Scholar
  33. Le Moine N, Andréassian V, Perrin C, Michel C (2007) How can rainfall-runoff models handle intercatchment groundwater flows? Theoretical study based on 1040 French catchments. Water Resour Res 43:1–11. doi: 10.1029/2006WR005608 Google Scholar
  34. Le Moine N, Andreassen V, Mathevet T (2008) Confronting surface- and groundwater balances on the La Rochefoucauld-Touvre karstic system (Charente, France). Water Resour Res 44:W03403. doi: 10.1029/2007WR005984 Google Scholar
  35. Maillet E (1905) Essais d’Hydraulique Souterraine et Fluviale. Hermann, ParisGoogle Scholar
  36. Mangin A (1984) Pour une meilleure connaissance des systemes hydrologiques a partir des analyses correlatoire et spectrale. J Hydrol 67:25–43CrossRefGoogle Scholar
  37. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. Part I—a discussion of principles. J Hydrol 10(3):282–290CrossRefGoogle Scholar
  38. Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for baseflow and recession analysis. Water Resour Res 26:1465–1473CrossRefGoogle Scholar
  39. Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J Hydrol 168(1–4):73–89CrossRefGoogle Scholar
  40. Padilla A, Pulido-Bosch A (2008) Simple procedure to simulate karstic aquifers. Hydrol Process 22(12):1876–1884CrossRefGoogle Scholar
  41. Palmer WC (1965) Meteorological drought, US Department of Commerce, Research Paper No. 45, Washington DC, 58 pGoogle Scholar
  42. Pandžić K (1985) Bilanca vode na istočnom primorju Jadrana (Water balance on the eastern Adriatic coastal region). Hrvatski meteorološki časopis, vol.20 No.20 Prosinac 1985Google Scholar
  43. Pandžić K, Šimunić I, Tomić F, Husnjak S, Likso T, Petošić D (2006) Comparison of three mathematical models for the estimation of 10-day drain discharge. Theor Appl Climatol 85:107–115. doi: 10.1007/s00704-005-0165-9 CrossRefGoogle Scholar
  44. Pedersen JT, Peters JC, Helweg OJ (1980) Hydrographs by single linear reservoir model. USACF. TP-74Google Scholar
  45. Penzar B (1976) Indeksi suhoće za Zagreb i njihova statistička prognoza (Drought severity index for Zagreb and its statistical forecast). Hrvatski meteorološki časopis 13(13):58Google Scholar
  46. Petras I (1986) An approach to the mathematical expression of recession curves. Water SA 12(3):145–150Google Scholar
  47. Pinault JL, Plagnes V, Aquilina L, Bakalowicz M (2001) Inverse modelling of the hydrological and the hydrochemical behaviour of hydrosystems: characterization of karst system functioning. Water Resour Res 37(8):2191–2204CrossRefGoogle Scholar
  48. Schumann AH (1993) Development of conceptual semi-distributed hydrological models and estimation of their parameters with the aid of GIS. Hydrol Sci 38(6):519–528CrossRefGoogle Scholar
  49. Singh VP (1988) Rainfall–runoff modelling, hydrologic systems, vol 1 and 2. Prentice-Hall, Englewood CliffsGoogle Scholar
  50. Turc L (1954) Le bilan d'eau des sols: relation entre les précipitations, l'évaporation et l'écoulement. Troisièmes journées de l'Hydraulique, Alger  12-14 avril 1954, pp 36-43. (Résumé de la thèse de l'auteur, Paris, 1953, parue ds Ann. Agron. 1954 et Sols Africains, vol. 111, 1954)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Faculty of Civil Engineering, Architecture and GeodesySplit UniversitySplitCroatia

Personalised recommendations