Skip to main content

Advertisement

Log in

Environmental isotopes applied to the evaluation and quantification of evaporation processes in wetlands: a case study in the Ajó Coastal Plain wetland, Argentina

Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the Ajó coastal plain, which occurs in the south of the Samborombón Bay, Argentina, certain sectors of the wetland are influenced by the tidal flow, whereas others are not. In the tidally restricted Ajó wetlands, the evapotranspiration process is one of the most important components of the water balance due to fact that the flat morphology and low soil permeability make the flow of surface and groundwater difficult. Although evaporation is an important component of evapotranspiration, a quantitative estimation of this process is still lacking or poorly known. In this work, we quantify the evaporation term in the tidally restricted wetlands by applying isotopic modelling and assessing the hydrological response of the wetland by means of other methodologies, such as satellite imaging and level measurements. The results show that during deficit periods, the total evaporation ranges between 10 and 33 % of the local precipitation. In groundwater samples, it fluctuates between 2 and 13 %, whereas in surface water it varies between 8 and 20 %. Analyses of the water budget, satellite images and water level time series provide evidence on how evaporation processes regulate the hydrology of the wetland. The water balance suggests the occurrence of a deficit period, in which the satellite images show a reduction of the waterlogged areas and lakes, and a lowering in surface and groundwater level is recorded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Acreman MC, Harding RJ, Lloyd CR, McNeil DD (2003) Evaporation characteristics of wetlands: experience from a wet grassland and a reed bed using eddy correlation measurements. Hydrol Earth Syst Sci 7:11–21

    Article  Google Scholar 

  • APHA (American Public Health Association) (1998) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington

    Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133

    Article  Google Scholar 

  • Cao X, Gao Z (2013) The responses of evapotranspiration due to changes of LUCC under seawater intrusion in a coastal region. Environ Earth Sci 70:1853–1862. doi:10.1007/s12665-013-2273-7

    Article  Google Scholar 

  • Carol E (2008) Procesos hidrológicos en el sector sur de Bahía de Samborombón. PhD Thesis. Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata. p 235

  • Carol E, Kruse E (2012) Hydrochemical characterization of the water resources in the coastal environments of the outer Río de la Plata estuary Argentina. J S Am Earth Sci 37:113–121

    Article  Google Scholar 

  • Carol E, Kruse E, Pousa J (2008) Environmental hydrogeology of the southern sector of the Samborombón bay wetland Argentina. Environ Geol 54:95–102

    Article  Google Scholar 

  • Carol E, Kruse E, Mas Pla J (2009) Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay Argentina. J Hydrol 365:335–345

    Article  Google Scholar 

  • Carol E, Kruse E, Pousa J (2011) Influence of the geologic and geomorphologic characteristics and of crab burrows on the interrelation between surface water and groundwater in an estuarine coastal wetland. J Hydrol 403:234–241

    Article  Google Scholar 

  • Carol E, Dragani W, Kruse E, Pousa J (2012) Surface water and groundwater characteristics in the wetlands of the Ajó River (Argentina). Cont Shelf Res 49:25–33

    Article  Google Scholar 

  • Carol E, Braga F, Kruse E, Tosi L (2014) A retrospective assessment of the hydrological conditions of the Samborombón coastland (Argentina). Ecol Eng 67:223–237

    Article  Google Scholar 

  • Coleman M, Sheperd T, Durham J, Rouse J, Moore F (1982) A rapid and precise technique for reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995

    Article  Google Scholar 

  • Conzonno VH, Miretzky PS, Fernandez Cirelli A (2001) The impact of manmade hydrology on the lower stream bed of the Salado River drainage basin (Argentina). Environ Geol 40:968–972

    Article  Google Scholar 

  • Courault D, Seguin B, Olioso A (2005) Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrig Drain Syst 19:223–249

    Article  Google Scholar 

  • Craig H, Gordon LI (1965) Deuterium and oxygen variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and paleo-temperatures. CNR Lab Geol Nucl, Pisa, pp 9–130

    Google Scholar 

  • Cui L, Gao C, Zhou D (2014) Quantitative analysis of the driving forces causing declines in marsh wetland landscapes in the Honghe region, northeast China, from 1975 to 2006. Environ Earth Sci 71:1357–1367. doi:10.1007/s12665-013-2542-5

    Article  Google Scholar 

  • Custodio E (2010) Las aguas subterráneas como elemento básico de la existencia de numerosos humedales. Ingeniería del Agua 17:120–135

    Google Scholar 

  • Dabrowska-Zielinska K, Budzynska M, Kowalik W, Turlej K (2010) Soil moisture and evapotranspiration of wetlands vegetation habitats retrieved from satellite images. Hydrol Earth Syst Sci 7:5929–5955

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Dapeña C, Panarello H (2004) Composición isotópica de la lluvia de Buenos Aires. Su importancia para el estudio de los sistemas hidrológicos pampeanos. Revista Latino Americana de Hidrogeología 4:17–25

    Google Scholar 

  • Dolan TJ, Hermann AJ, Bayley SE, Zoltek J Jr (1984) Evapotranspiration of a Florida, USA, freshwater wetland. J Hydrol 74:355–371

    Article  Google Scholar 

  • Drexler JZ, Snyder RL, Spano D, Paw UKT (2004) A review of models and micrometeorological methods used to estimate wetland evapotranspiration. Hydrol Process 18:2071–2101. doi:10.1002/hyp.1462

    Article  Google Scholar 

  • Drexler JZ, Anderson FE, Snyder RL (2008) Evapotranspiration rates and crop coefficients for are stored marsh in the Sacramento-San Joaquin Delta, California USA. Hydrol Process 22:725–735

    Article  Google Scholar 

  • Fass T, Cook PG, Stieglitz T, Herczeg AL (2007) Development of saline ground water through transpiration of sea water. Ground Water 45:703–710

    Article  Google Scholar 

  • Fernandez Cirelli A, Miretzky P (2004) Ionic relations: a tool for studying hydro-geochemical processes in Pampean shallow lakes (Buenos Aires, Argentina). Quatern Int 114:113–121

    Article  Google Scholar 

  • Gonfiantini R (1978) Standard for stable isotope measurements in natural compounds. Nature pp 271–534

  • Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes JC (eds.), Handbook of Environmental Isotope Geochemistry. Elsevier, New York pp 113–168

  • Goulden ML, Livak M, Miller SD (2007) Factors that control Typha marsh evapotranspiration. Aquat Bot 86:97–106

    Article  Google Scholar 

  • Hemakumara HM, Chandrapala L, Moene AF (2003) Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agr Water Manage 58:109–122

    Article  Google Scholar 

  • Huang L, Bai J, Chen B, Zhang K, Huang C, Liu P (2012) Two-decade wetland cultivation and its effects on soil properties in salt marshes in the Yellow River Delta China. Ecol Inform 10:49–55

    Article  Google Scholar 

  • Humphries MS, Kindness A, Ellery WN, Hughes JC, Bond JK, Barnes KB (2011) Vegetation influences on groundwater salinity and chemical heterogeneity in a freshwater, recharge floodplain wetland, South Africa. J Hydrol 411:130–139

    Article  Google Scholar 

  • Hunt RJ, Bullen TD, Krabbenhoft DP, Kendall C (1998) Using stable isotopes of water and strontium to investigate the hydrology of a natural and a constructed wetland. Groundwater 36:434–443

    Article  Google Scholar 

  • Jia Z, Luo W, Xie J, Pan Y, Chen Y, Tang S, Liu W (2011) Salinity dynamics of wetland ditches receiving drainage from irrigated agricultural land in arid and semi-arid regions. Agric Water Manage 100:9–17

    Article  Google Scholar 

  • Koerselman W, Beltman B (1988) Evapotranspiration from fens in relation to Penman’s potential free water evaporation (E0) and pan evaporation. Aquat Bot 3:307–320

    Article  Google Scholar 

  • Kustas WP, Norman JM (1996) Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrolog Sci J 41:495–516

    Article  Google Scholar 

  • Ladouche B, Weng P (2005) Hydrochemical assessment of the Rochefort marsh: role of surface and groundwater in the hydrological functioning of the wetland. J Hydrol 314:22–42

    Article  Google Scholar 

  • Lenters JD, Cutrell GJ, Istanbullouglu E, Scott DT, Herrman KS, Irmak A, Eisenhauer DE (2011) Seasonal energy and water balance of a Phragmites australis dominated wetland in the Republican River basin of south-central Nebraska (USA). J Hydrol 408:19–34

    Article  Google Scholar 

  • Mandal S, Ray S, Ghosh PB (2013) Impact of mangrove litterfall on nitrogen dynamics of virgin and reclaimed islands of Sundarban mangrove ecosystem India. Ecol Model 252:153–166

    Article  Google Scholar 

  • Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium—oxygen 18 relationship for precipitation. J Geophys Res 84:5029–5033

    Article  Google Scholar 

  • Mitsch WJ, Gosslink JG (2000) Wetlands, 3rd edn. Van Norstrand Reinhold, New York

    Google Scholar 

  • Mould DJ, Frahm E, Salzmann T (2011) Evaluating the use of diurnal groundwater fluctuations for estimating evapotranspiration in wetland environments: case studies in England and northeast Germany. Ecohydrology 3:294–305

    Article  Google Scholar 

  • Nuttle W, Harvey J (1995) Fluxes of water and solute in a coastal wetland sediment. 1. The contribution of regional groundwater discharge. J Hydrol 164:89–107

    Article  Google Scholar 

  • Panarello H, Albero M (1983) Tritium, oxygen-18 and deuterium contents of Buenos Aires rainwater. Coloquio Internacional sobre Hidrología de Grandes Llanuras II:889–898

    Google Scholar 

  • Panarello H, Paricia C (1984) Isótopos del oxígeno en hidrogeología e hidrología. Primeros valores en agua de lluvia de Buenos Aires. Rev Asoc Geol Argent 34:3–11

    Google Scholar 

  • Pauliukonis N, Schneider R (2001) Temporal patterns in evapotranspiration from lysimeters with three common wetland plant species in the eastern United States. Aquat Bot 71:35–46

    Article  Google Scholar 

  • Pousa J, Kruse E, Carol E, Carretero S, Guaraglia D (2011) Interrelation between coastal processes, surface water and groundwater at the outer coastal region of the Rio de la Plata Estuary Argentina. Adv Environ Res 10:67–96

    Google Scholar 

  • Sikdar PK, Sahu P (2009) Understanding wetland sub-surface hydrology using geologic and isotopic signatures. Hydrol Earth Syst Sci Discuss 6:3143–3173

    Article  Google Scholar 

  • Sun ZP, Wei B, Su W, Shen WM, Wang CA, You DA, Liu Z (2010) Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Math Comput Model 54:1086–1092

    Article  Google Scholar 

  • Tadic L, Bonacci O, Dadic T (2013) Dynamics of the Kopacki Rit (Croatia) wetland floodplain water regime. Earth Sci Environ. doi:10.1007/s12665-013-2747-7

    Google Scholar 

  • Teal JM, Weinstein MP (2002) Ecological engineering, design, and construction considerations for marsh restorations in Delaware Bay USA. Ecol Eng 18:607–618

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publ Climatol 10:185–311

    Google Scholar 

  • Zhou L, Zhou GS, Liu SH, Sui XH (2010) Seasonal contribution and inter annual variation of evapotranspiration over a reed marsh (Phragmites australis) in Northeast China from 3 year eddy covariance data. Hydrol Process 24:1039–1047

    Article  Google Scholar 

Download references

Acknowledgments

This work was developed under the Scientific Cooperation Agreement between the National Scientific and Technical Research Council (CONICET, Argentina) and the National Research Council (CNR, Italy), 2013–2014 period, within the Project “Fresh/salt waters in high-value coastlands: from the hydrogeophysical/geochemical characterization of the present interactions to the modeling quantification of the expected effects of climate changes.” Satellite images were obtained from the US Geological Survey—Earth Resources Observation and Science (EROS) Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Carol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carol, E., Braga, F., Da Lio, C. et al. Environmental isotopes applied to the evaluation and quantification of evaporation processes in wetlands: a case study in the Ajó Coastal Plain wetland, Argentina. Environ Earth Sci 74, 5839–5847 (2015). https://doi.org/10.1007/s12665-015-4601-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4601-6

Keywords

Navigation