Skip to main content

Advertisement

Log in

Determination of seismic liquefaction potential of soil based on strain energy concept

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the present study, minimax probability machine regression (MPMR) and extreme learning machine (ELM) have been adopted for prediction of seismic liquefaction of soil based on strain energy. Initial effective mean confining pressure (\( \sigma_{\text{mean}}^{\prime} \)), initial relative density after consolidation (D r), percentage of fines content (FC), coefficient of uniformity (C u), and mean grain size (D 50) have been taken as inputs of MPMR and ELM models. MPMR and ELM have been used as regression techniques. The performances of MPMR and ELM have been compared with the artificial neural network. A sensitivity analysis has been carried out to determine the effect of each input. The experimental results demonstrate that proposed methods are robust models for determination seismic liquefaction potential of soil based on strain energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal G, Chameau JA, Bourdeau PL (1997) Assessing the liquefaction susceptibility at a site based on information from penetration testing. In: Kartam N, Flood I, Garrett JH (eds) Artificial neural networks for civil engineers: fundamentals and applications. ASCE, New York, pp 185–214

  • Ali HE, Najjar YM (1998) Neuronet-based approach for assessing liquefaction potential of soils. Transp Res Rec 1633:3–8

    Article  Google Scholar 

  • Andrus RD, Stokoe KH (1997) Liquefaction resistance based on shear wave velocity. In: Proceedings of the NCEER workshop on evaluation of liquefaction resistance of soils. National Center for Earthquake Engineering Research, State University of New York, Buffalo, pp 89–128

  • Balbay A, Avci E, Sahin O et al (2012) Modeling of drying process of bittim nuts (Pistacia terebinthus) in a fixed bed dryer system by using extreme learning machine. Int J Food Eng 8(4):10

    Article  Google Scholar 

  • Bazi Y, Alajlan N, Melgani F et al (2014) Differential evolution extreme learning machine for the classification of hyperspectral images. IEEE Geosci Remote Sens Lett 11(6):1066–1070

    Article  Google Scholar 

  • Baziar MH, Jafarian Y (2007) Assessment of liquefaction triggering using strain energy concept and ANN model capacity energy. Soil Dyn Earthq Eng 27:1056–1072

    Article  Google Scholar 

  • Berrill JB, Davis RO (1985) Energy dissipation and seismic liquefaction of sands: revised model. Soils Found 25(2):106–118

    Article  Google Scholar 

  • Goh ATC (1994) Seismic liquefaction potential assessed by neural networks. J Geotech Eng 120(9):1467–1480

    Article  Google Scholar 

  • Goh ATC (1996) Neural-network modeling of CPT seismic liquefaction data. J Geotech Eng 122(1):70–73

    Article  Google Scholar 

  • Goh ATC (2002) Probabilistic neural network for evaluating seismic liquefaction potential. Can Geotech J 39:219–232

    Article  Google Scholar 

  • Goh ATC, Goh SH (2007) Support vector machines: their use in geotechnical engineering as illustrated using seismic liquefaction data. Comput Geotech 34(5):410–421

    Article  Google Scholar 

  • Green RA (2001) Energy-based evaluation and remediation of liquefiable soils. PhD Dissertation, Virginia Polytechnic Institute and State University, Blacksburg

  • Hardy VA, Cheah YN (2013) Question classification using extreme learning machine on semantic features. J ICT Res Appl 7(1):36–58

    Article  Google Scholar 

  • Huang GB (2003) Learning capability and storage capacity of two hidden-layer Feedforward networks. IEEE Trans Neural Netw 14(2):274–281

    Article  Google Scholar 

  • Huang GB, Babri HA (1998) Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans Neural Netw 9(1):224–229

    Article  Google Scholar 

  • Huang GB, Siew CK (2004) Extreme learning machine: RBF network case. In: Proceedings of the eighth international conference on control, automation, robotics, and vision (ICARCV’04)

  • Huang GB, Siew CK (2005) Extreme learning machine with randomly assigned RBF kernels. Int J Inf Technol 11(1):16–24

    Google Scholar 

  • Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: Proceedings of the international joint conference on neural networks

  • Javadi AA, Rezania M, Mousavi Nezhad M (2006) Evaluation of liquefaction induced lateral displacements using genetic programming. Comput Geotech 33:222–233

    Article  Google Scholar 

  • Juang CH, Chen CJ (1999) CPT-based liquefaction evaluation using artificial neural networks. Comput Aided Civ Infrastruct Eng 14(3):221–229

    Article  Google Scholar 

  • Lanckriet GRG, Ghaoui LE, Bhattacharyya C et al (2002) A robust minimax approach to classification. J Mach Learn Res 3:555–582

    Google Scholar 

  • Law KT, Cao YL, He GN (1990) An energy approach for assessing seismic liquefaction potential. Can Geotech J 27:320–329

    Article  Google Scholar 

  • Liang L, Figueroa JL, Saada AS (1995) Liquefaction under random loading: a unit energy approach. J Geotech Eng ASCE 121(GT11):776–781

    Article  Google Scholar 

  • Liong SY, Lim WH, Paudyal GN (2000) River stage forecasting in Bangladesh: neural network approach. J Comput Civ Eng 14(1):1–8

    Article  Google Scholar 

  • Liu Z (2005) Chaotic time series prediction based on MPMR. J Comput Inf Syst 1(4):733–739

    Google Scholar 

  • Liu Z, Xie X, Zhang D (2006) Predict chaotic time series using minimax probability machine regression. Inf Technol J 5(3):529–533

    Article  Google Scholar 

  • Pal M (2006) Support vector machine-based modeling of seismic liquefaction potential. Int J Numer Anal Methods Geomech 30(10):983–996

    Article  Google Scholar 

  • Robertson PK, Campanella RG (1985) Liquefaction potential of sands using the CPT. J Geotech Eng 111:384–403

    Article  Google Scholar 

  • Samui P (2011) Least square support vector machine and relevance vector machine for evaluating seismic liquefaction potential using SPT. Nat Hazards 59(2):811–822

    Article  Google Scholar 

  • Samui P, Karthikeyan J (2013) Determination of liquefaction susceptibility of soil: a least square support vector machine approach. Int J Numer Anal Methods Geomech 37(9):1154–1161

    Article  Google Scholar 

  • Seed HB, Idriss IM (1967) Analysis of soil liquefaction: Niigata earthquake. J Soil Mech Found Div ASCE 93(3):83–108

    Google Scholar 

  • Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div ASCE 97(9):1249–1273

    Google Scholar 

  • Seed HB, Idriss IM, Arango I (1983) Evaluation of liquefaction potential using field performance data. J Geotech Eng Div ASCE 109(3):458–482

    Article  Google Scholar 

  • Seed HB, Tokimatsu K, Harder LF et al (1984) Influence of SPT procedures in soil liquefaction resistance evaluation. Report No. UCB/EERC-84/15. Earthquake Engineering Research Centre, University of California, Berkeley

  • Serre D (2002) Matrices: theory and applications. Springer, New York

    Google Scholar 

  • Strohmann TR, Grudic GZ (2002) A Formulation for minimax probability machine regression. In: Dietterich TG, Becker S, Ghahramani Z (eds) Advances in neural information processing systems (NIPS) 14. MIT Press, Cambridge

    Google Scholar 

  • Sun J, Bai Y, Luo J et al (2009) Modelling of a chaotic time series using a modified minimax probability machine regression. Chin J Phys 47(4):491–501

    Google Scholar 

  • Yibin YE, Squartini S, Piazza F (2011) ELM-based algorithms for nonstationary Volterra system identification. Front Artif Intell Appl 234:77–84

    Google Scholar 

  • Youd TL, Idriss IM, Andrus RD et al (2001) Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J Geotech Geoenviron Eng ASCE 127(10):817–833

    Article  Google Scholar 

  • Young Su K, Byung Tak K (2006) Use of artificial neural networks in the prediction of liquefaction resistance of sands. J Geotech Geoenviron Eng 132(11):1502–1504

    Article  Google Scholar 

  • Zhu Q, Qin AK, Suganthan PN et al (2005) Evolutionary extreme learning machine. Pattern Recogn 38(10):1759–1763

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pijush Samui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samui, P., Kim, D. & Hariharan, R. Determination of seismic liquefaction potential of soil based on strain energy concept. Environ Earth Sci 74, 5581–5585 (2015). https://doi.org/10.1007/s12665-015-4567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4567-4

Keywords

Navigation