Environmental Earth Sciences

, Volume 74, Issue 7, pp 5517–5523 | Cite as

Microbiological quality and genotoxic potential of surface water located above the Guarani aquifer

  • A. ViancelliEmail author
  • C. W. Deuner
  • M. Rigo
  • J. Padilha
  • J. A. P. Marchesi
  • G. Fongaro
Original Article


In crop farms, it is common to use animal livestock manure as soil biofertilizer, as well as agricultural defensives that can reach to ground and surface waters. Waterborne microorganisms as Salmonella and Escherichia coli can cause gastroenteritis to consumers, and the presence of chemical compounds can cause DNA mutation damages in exposed organisms. Thus, the present study aimed at quantifying E. coli and Salmonella in surface water from the Suruvi river (located above the Guarani aquifer) and evaluating the water genotoxic potential using Allium cepa as a model. For that, five sampling sites were established, and water samples were collected from March/2013 to June/2014, and submitted to bacteria enumeration, and genotoxicity assay. Moreover, rainfall volume and air temperature were measured. Results indicated the occurrence of Salmonella in 14 % of the samples and high amounts of E. coli (>1875 MPN/100 mL). The amount of E. coli decreased as the rainfall volume increased. The genotoxicity assay results showed that water contains substances, which are able to induce changes in mitotic index on the root meristem cells of A. cepa. In summary, surface water sources are contaminated with fecal material and genotoxic substances, emphasizing the importance of surveillance of surface and groundwater in this region, especially because of the proximity to the Guarani aquifer.


Allium cepa Salmonella Suruvi river Mitotic index Guarani aquifer 



The present study had the financial support from Secretaria de Estado da Educação de SC, art. 170.

Conflict of interest

All authors do not have any actual or potential conflict of interest.


  1. Albarnaz JD, Toso J, Corrêa AA, Simões CMO, Barardi CRM (2007) Relationship between the contamination of gulls (Larus dominicanus) and oysters (Crassostrea gigas) with Salmonella serovar Typhimurium by PCR-RFLP. Int J Environ Heal R 17(2):1–8CrossRefGoogle Scholar
  2. Amaral AM, Barbério A, Voltolini JC, Barros L (2007) Avaliação preliminar da citotoxicidade e genotoxicidade, da água da bacia do rio Tapanhon (SP-Brasil) através do teste Allium (Allium cepa). Ver Bras Toxicol 20(1–2):65–72Google Scholar
  3. Beneli DM (2013) Invertebrados aquáticos e as condições ambientais do rio Suruvi. Monography, Universidade do Contestado, ConcórdiaGoogle Scholar
  4. Beyersmann D, Hartwig A (2008) Carcionogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512CrossRefGoogle Scholar
  5. Bogoni JA, Armiliato N, Araldi-Favassa CT, Techio VH (2014) Genotoxicity in Astyanax bimaculatus (Twospot Astyanax) exposed to the waters of Engano river (Brazil) as determined by micronucleus tests in erythrocytes. Arch Environ Con Tox 66(3):441–449CrossRefGoogle Scholar
  6. Brazil (2006) Ministry of Health Surveillance and control of water quality for human consumption/Ministry of Health. Secretariat of Health Surveillance, Brasilia: Ministry of Health, p 212Google Scholar
  7. Debarba L, Amado TJC (1997) Desenvolvimento de sistemas de produção de milho no sul do brasil com características de sustentabilidade. Rev Bras Ciênc Solo 21(3):473–480CrossRefGoogle Scholar
  8. Düsman E, Luzza M, Savegnago L, Lauxen D, Vicentini VE, Tonial IB, Sauer TP (2014) Allium cepa L. as a bioindicator to measure cytotoxicity of surface water of the Quatorze River, located in Francisco Beltrão, Paraná, Brazil. Environ Monit Assess 186(3):1793–1800CrossRefGoogle Scholar
  9. Egito LCM, Medeiros MG, Medeiros SRB, Agnez-Lima LF (2007) Cytotoxic and genotoxic potential of surface water from the Pitimbu river, northeastern/RN Brazil. Genet Mol Biol 30(2):435–441CrossRefGoogle Scholar
  10. Fong TT, Lipp EK (2005) Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol Mol Biol Rev 69:357–371CrossRefGoogle Scholar
  11. Fongaro G, Viancelli A, Magri ME, Elmahdy EM, Biesus LL, Kich JD, Kunz A, Barardi CRM (2014) Utility of specific biomarkers to assess safety of swine manure for biofertilizing purposes. Sci Total Environ 479:277–283CrossRefGoogle Scholar
  12. Gadano A, Gurni A, López P, Ferraro G, Carballo M (2002) In vitro genotoxic evaluation of the medicinal plant Chenopodium ambrosioides L. J Ethonopharmacol 81:11–16CrossRefGoogle Scholar
  13. Garcia LAT, Viancelli A, Rigotto C, Pilotto MR, Esteves PA, Kunz A, Barardi CRM (2012) Surveillance of human and swine adenovirus, human norovirus and swine circovirus in water samples in Santa Catarina. Brazil. J Water Health 10(3):445–452CrossRefGoogle Scholar
  14. Geremias R, Bortolotto T, Wilhelm-Filho D, Pedrosa RC, Fávere VT (2012) Efficacy assessment of acid mine drainage treatment with coal mining waste using Allium cepa L. as a bioindicator. Ecotox Environ Safe 79:116–121CrossRefGoogle Scholar
  15. Klerks MM, Franz E, Gent-Pelzer M, Zijlstra C, Bruggen AHC (2007) Differential interaction of Salmonella enterica serovars with lettuce cultivars and plant-microbe factors influencing the colonization efficiency. ISME J 1(7):620–631CrossRefGoogle Scholar
  16. Leonard AF, Zhang L, Balfour AJ, Garside R, Gaze WH (2015) Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environ Inter. doi: 10.1016/j.envint.2015.02.013 Google Scholar
  17. Levantesi C, Bonadonna L, Briancesco R, Grohmann E, Toze S, Tandoi V (2012) Salmonella in surface and drinking water: occurrence and water-mediated transmission. Food Res Int 45(2):587–602CrossRefGoogle Scholar
  18. Lodder WJ, Van Den Berg HH, Rutjes SA, De Roda Husman A M (2010) Presence of enteric viruses in source waters for drinking water production in the Netherlands. Appl Environ Microb 76(17):5965–5971CrossRefGoogle Scholar
  19. Mazzeo DEC, Fernandes TCC, Marin-Morales MA (2011) Cellular damages in the Allium cepa test system, caused by BTEX mixture prior and after biodegradation process. Chemosphere 85:13–18CrossRefGoogle Scholar
  20. Michael GB, Simoneti R, Costa M, Cardoso M (2003) Comparison of different selective enrichment steps to isolate Salmonella sp. from feces of finishing swine. Braz. J Microbiol 34(2):138–142Google Scholar
  21. Morinigo MA, Cornax R, Munoz MA, Romero P, Borrego JJ (1990) Relationships between salmonella spp and indicator microorganisms in polluted natural waters. Water Res 24(1):117–120CrossRefGoogle Scholar
  22. Ohe T, Watanabe T, Wakabayashi K (2004) Mutagens in the surface water: a review. Mutat Res 567:109–149CrossRefGoogle Scholar
  23. Palhares JCP, Kich JD, Bessa MC, Biesus LL, Berno LG, Triques NJ (2014) Salmonella and antimicrobial resistence in na animal-based agriculture river system. Sci Total Environ 472:654–661CrossRefGoogle Scholar
  24. Pillon CN, Miranda CR, Guidoni AL, Cordebella A, Pereira RK (2003) Diagnostico das propriedades suinıcolas da area de abrangencia do Consorcio Lambari, SC. Consorcio Lambari. Accessed 14 June 2012
  25. Piorkowski GS, Jamieson RC, Hansen LT, Bezanson GS, Yost CK (2014) Characterizing spatial structure of sediment E. coli populations to inform sampling design. Environ Monit Assess 186(1):277–291CrossRefGoogle Scholar
  26. Quinn PJ, Carter ME, Markey BK, Carter GR (1994) Clinical veterinary microbiology. Wolfe Publishing, LondonGoogle Scholar
  27. Rank J, Nielsen MH (1994) Evaluation of the Allium anaphase-telophase test in relation to genotoxicity screening of industrial wastewater. Mutat Res 312(1):17–24CrossRefGoogle Scholar
  28. Ribeiro W (2008) Aquífero Guarani: gestão compartilhada e soberania. Estud Av 22(64):227–238CrossRefGoogle Scholar
  29. Scheibe LF, Hirata R (2011) O Sistema Aquífero Integrado Guarani/Serra Geral (SAIG/SG) em Santa Catarina e os Recursos Hídricos da Bacia do Rio do Peixe. In: Joviles Vitório Trevisol; Luiz Fernando Scheibe (eds) Bacia Hidrográfica do Rio do Peixe Natureza e Sociedade. 1ed. UNOESC, Joacaba, pp 55–81Google Scholar
  30. Schneider RN, Nadvorny A, Schmid V (2009) Perfil de resistência antimicrobiana de isolados de Escherichia coli obtidos de águas superficiais e subterrâneas, em área de produção de suínos. Biotemas 22:11–17Google Scholar
  31. Sigua GC, Palhares JCP, Steinmetz RLR, Mulinari MR (2009) Microbiological quality assessment of watershed associated with animal-based agriculture in Santa Catarina, Brazil. Water Air Soil Poll 210:307–316CrossRefGoogle Scholar
  32. Silva N, Neto RC, Junqueira VCA, Silveira NFA (2005) Manual de métodos de analise microbiológica da agua. Varela Editora e Livraria, São PauloGoogle Scholar
  33. SIRVETA (2013) Sistema de vigilância epidemiológica de enfermidades transmitidas por alimentos. Accessed 3 Nov 2013
  34. Sobsey MD, Khatib LA, Hill VR, Alocilja E, Pillai S (2006) Pathogens in animal wastes and the impacts of waste management practices on their survival, transport and fate. In: Rice JM, Caldwell DF, Humenik FJ (eds) Animal Agriculture and the Environment. ASABE, St. Joseph, pp 609–666Google Scholar
  35. Techio VH, Stolberg J, Kunz A, Zanin E, Perdomo CC (2011) Genotoxicity of swine effluents. Water Sci Technol 63(5):970–976CrossRefGoogle Scholar
  36. Topp E, Scott A, Lapen DR, Lyautey E, Duriez P (2009) Livestock waste treatment systems for reducing environmental exposure to hazardous enteric pathogens: some considerations. Bioresour Technol 100(22):5395–5398CrossRefGoogle Scholar
  37. Trentini ÉC (2009) Produção Agrícola e Proteção Ambiental: Desafos à gestão dos recursos naturais no meio rural. In: Miranda CR, Miele M (eds) Suinocultura e Meio Ambiente em Santa Catarina: Indicadores de desempenho e avalição sócio-econômica. 1ed. EMBRAPA—Empresa Brasileira de Pesquisa Agropecuária, Concórdia, pp 177–201Google Scholar
  38. United States Environmental Protection Agency (USEPA) (2002) Guidance for choosing a sampling design for environmental data collection. Accessed 23 June 2014
  39. United States Environmental Protection Agency (USEPA) (2009) Review of zoonotic pathogens in ambient waters. EPA 822-R-09-002. Health and Ecological Criteria Division, Office of Water, Washington, DCGoogle Scholar
  40. Vanzella TP, Martinez CBR, Cólus IMS (2007) Genotoxic and mutagenic effects of diesel oil water fraction on a neotropical fish species. Mutat Res 631:36–43CrossRefGoogle Scholar
  41. Vereen E Jr, Lowrance RR, Jenkins MB, Adams P, Rajeev S, Lipp EK (2013) Landscape and seasonal factors influence Salmonella and Campylobacter prevalence in a rural mixed use watershed. Water Res 47(16):6075–6085CrossRefGoogle Scholar
  42. Viancelli A, Kunz A, Steinmetz RLR, Kich JD, Souza CK, Canal CW, Coldebella A, Esteves PA, Barardi CRM (2013) Performance of two swine manure treatment systems on chemical composition and on the reduction of pathogens. Chemosphere 90:1539–1544CrossRefGoogle Scholar
  43. Vilariño ML, LeGuyader FS, Polo D, Schaeffer J, Krol J, Romalde JL (2009) Assessment of human enteric viruses in cultured and wild bivalve molluscs. Int Microbiol 12(3):145–151Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Viancelli
    • 1
    Email author
  • C. W. Deuner
    • 1
  • M. Rigo
    • 1
  • J. Padilha
    • 1
  • J. A. P. Marchesi
    • 1
  • G. Fongaro
    • 2
  1. 1.Laboratório de Análise AmbientalUniversidade do ContestadoConcórdiaBrazil
  2. 2.Laboratório de Virologia Aplicada, Departamento de Microbiologia, Imunologia e ParasitologiaUniversidade Federal de Santa CatarinaFlorianópolisBrazil

Personalised recommendations