Skip to main content

Advertisement

Log in

Estimation of soil loss by the WATEM/SEDEM model using an automatic parameter estimation procedure

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Soil degradation is a major environmental problem in many parts of the world, including Slovenia. The spatially distributed WATEM/SEDEM model can be used to identify the most critical parts of the catchment with regard to soil erosion. Five Slovenian (Central Europe) catchments with inhomogeneous topography, land use, geological conditions, hydro-meteorological properties and sizes (catchment areas between 1 and 2000 km2) were modeled with calibrated parameters, while the WATEM/SEDEM model was calibrated with an automatic parameter estimation procedure, which is model independent. Both direct and indirect information regarding sediment yields, including turbidity measurements, daily suspended sediment concentration observations and bed load observations, were used for the WATEM/SEDEM model’s calibration. A detailed rainfall erosivity (R) factor map, which was constructed from 5-min rainfall data from 31 pluviographic meteorological stations, was used as one of the inputs for the WATEM/SEDEM model. The calculated mean annual soil loss was between 0.3 and 7.4 t/ha/year, and the sediment delivery ratio (SDR) ranged from 0.07 to 0.22 for 5 modeled catchments. The results indicate that the SDR decreases with increasing catchment area; however, the ratio between the average sediment yield and mean soil erosion obviously depends on many other factors, e.g., topography, climatic and geological conditions. The parcel trap efficiency parameter for forests had the greatest influence on the WATEM/SEDEM model’s outputs in all five case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alatorre LC, Begueria S, Garcia-Ruiz JM (2010) Regional scale modeling of hillslope sediment delivery: a case study in the Barasona Reservoir watershed (Spain) using WATEM/SEDEM. J Hydrol 391:111–125. doi:10.1016/j.jhydrol.2010.07.010

    Article  Google Scholar 

  • Alatorre LC, Begueria S, Lana-Renault N, Navas A, Garcia-Ruiz JM (2012) Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model. Hydrol Earth Syst Sci 16:1321–1334. doi:10.5194/hess-16-1321-2012

    Article  Google Scholar 

  • Auerswald KSF (1986) Atlas der Erosionsgefährdung in Bayern: Karten zum flächenhaften Bodenabtrag durch Regen. Bayerisches Geologisches Landesamt, München

    Google Scholar 

  • AutoIt (2014) Automation and scripting language. http://www.autoitscript.com/site/autoit/. Accessed 1 May 2014

  • Babić Mladenović M, Bekić D, Grošelj S, Mikoš M, Kupusović T, Oskoruš D, Petković S (2014) Towards sediment management in the Sava River Basin. Water research and management, 4(1): 3–13. http://www.wrmjournal.com/. Accessed 1 August 2014

  • Bezak N, Šraj M, Mikoš M (2013) Overview of suspended sediments measurements in Slovenia and an example of data analysis. Gradbeni vestnik 62:274–280 (In Slovene)

    Google Scholar 

  • Bezak N, Šraj M, Mikoš M (2015) Analyses of suspended sediment loads in Slovenian rivers. Hydrol Sci J-J-des Sci Hydrol. doi:10.1080/02626667.2015.1006230

    Google Scholar 

  • Bonacci O, Oskorus D (2010) The changes in the lower Drava River water level, discharge and suspended sediment regime. Environ Earth Sci 59:1661–1670. doi:10.1007/s12665-009-0148-8

    Article  Google Scholar 

  • Brown LC, Foster GR (1987) Storm erosivity using idealised intensity distribution. Trans Am Soc Agric Engrs 30:379–386. doi:10.13031/2013.31957

    Article  Google Scholar 

  • de Vente J, Poesen J, Verstraeten G, Van Rompaey A, Govers G (2008) Spatially distributed modelling of soil erosion and sediment yield at regional scales in Spain. Glob Planetary Change 60:393–415. doi:10.1016/j.gloplacha.2007.05.002

    Article  Google Scholar 

  • Demirci A, Karaburun A (2012) Estimation of soil erosion using RUSLE in a GIS framework: a case study in the Buyukcekmece Lake watershed, northwest Turkey. Environ Earth Sci 66:903–913. doi:10.1007/s12665-011-1300-9

    Article  Google Scholar 

  • Desmet PJJ, Govers G (1996) A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J Soil Water Conserv 51:427–433

    Google Scholar 

  • Diodato N, Bellocchi G (2012) Decadal modelling of rainfall-runoff erosivity in the Euro-Mediterranean region using extreme precipitation indices. Glob Planet Change 86–87:79–91. doi:10.1016/j.gloplacha.2012.02.002

    Article  Google Scholar 

  • Diodato N, Knight J, Bellocchi G (2013) Reduced complexity model for assessing patterns of rainfall erosivity in Africa. Glob Planet Change 100:183–193. doi:10.1016/j.gloplacha.2012.10.016

    Article  Google Scholar 

  • Doherty J (2003) Ground water model calibration using pilot points and regularization. Gr Water 41:170–177. doi:10.1111/j.1745-6584.2003.tb02580.x

    Article  Google Scholar 

  • Doherty J, Johnston JM (2003) Methodologies for calibration and predictive analysis of a watershed model. J Am Water Resour Assoc 39:251–265. doi:10.1111/j.1752-1688.2003.tb04381.x

    Article  Google Scholar 

  • Feng X, Wang Y, Chen L, Fu B, Bai G (2010) Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau. Geomorphology 118:239–248. doi:10.1016/j.geomorph.2010.01.004

    Article  Google Scholar 

  • Ferro V, Minacapilli M (1995) Sediment delivery processes at basin scale. Hydrol Sci J-J-des Sci Hydrol 40:703–717. doi:10.1080/02626669509491460

    Article  Google Scholar 

  • Gu RR, Li YT (2002) River temperature sensitivity to hydraulic and meteorological parameters. J Environl Manag 66:43–56. doi:10.1006/jema.2002.0565

    Article  Google Scholar 

  • He X, Sonnenborg TO, Jorgensen F, Hoyer AS, Moller RR, Jensen KH (2013) Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time. Hydrol Earth Syst Sci 17:3245–3260. doi:10.5194/hess-17-3245-2013

    Article  Google Scholar 

  • Irvem A, Topaloglu F, Uygur V (2007) Estimating spatial distribution of soil loss over Seyhan River Basin in Turkey. J Hydrol 336:30–37. doi:10.1016/j.jhydrol.2006.12.009

    Article  Google Scholar 

  • Jordan G, van Rompaey A, Szilassi P, Csillag G, Mannaerts C, Woldai T (2005) Historical land use changes and their impact on sediment fluxes in the Balaton basin (Hungary). Agric Ecosyst Environ 108:119–133. doi:10.1016/j.agee.2005.01.013

    Article  Google Scholar 

  • Keesstra SD, van Dam O, Verstraeten G, van Huissteden J (2009) Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena 78:60–71. doi:10.1016/j.catena.2009.02.021

    Article  Google Scholar 

  • Kirkby MJ, Irvine BJ, Jones RJA, Govers G, PESERA team (2008) The PESERA coarse scale erosion model for Europe. Model rationale and implementation. European J Soil Sci 59:1293–1306

    Article  Google Scholar 

  • Lawrence D, Haddeland I, Langsholt E (2009) Calibration of HBV hydrological models using PEST parameter estimation. Norwegian Water Resources and Energy Directorate, Oslo, p 44

    Google Scholar 

  • Lenzi MA, Marchi L (2000) Suspended sediment load during floods in a small stream of the Dolomites (northeastern Italy). Catena 39:267–282. doi:10.1016/s0341-8162(00)00079-5

    Article  Google Scholar 

  • Lu H, Moran CJ, Prosser IP (2006) Modelling sediment delivery ratio over the Murray Darling Basin. Environ Model Softw 21:1297–1308. doi:10.1016/j.envsoft.2005.04.021

    Article  Google Scholar 

  • McCool DK, Brown LC, Foster GR, Mutchler CK, Meyer LD (1987) Revised slope steepness factor for the Universal soil loss equation. Trans ASAE 30:1387–1396

    Article  Google Scholar 

  • Merritt WS, Letcher RA, Jakeman AJ (2003) A review of erosion and sediment transport models. Environ Model Softw 18:761–799. doi:10.1016/s1364-8152(03)00078-1

    Article  Google Scholar 

  • Mikoš M (2000a) Prodna bilanca reke Save od Jesenic do Mokric = Sediment budget of the Sava river from Jesenice to Mokrice. Gradbeni vestnik 49:208–219 (In Slovene)

    Google Scholar 

  • Mikoš M (2000b) Zasipavanje akumulacijskih jezer na reki Savi = Sedimentation of retention basins on the Sava River. Gradbeni vestnik 49:224–230 (In Slovene)

    Google Scholar 

  • Mikoš M, Jošt D, Petkovšek G (2006a) Rainfall and runoff erosivity in the alpine climate of north Slovenia: a comparison of different estimation methods. Hydrol Sci J-J-des Sci Hydrol 51:115–126. doi:10.1623/hysj.51.1.115

    Article  Google Scholar 

  • Mikoš M, Fazarinc R, Ribičič M (2006b) Sediment production and delivery from recent large landslides and earthquake-induced rock falls in the Upper Soča River Valley, Slovenia. Eng Geol 86:198–210. doi:10.1016/j.enggeo.2006.02.015

    Article  Google Scholar 

  • MKO—Ministry of agriculture and the environment of the Republic of Slovenia (2014) Slovenian land–use map 2014. http://rkg.gov.si/GERK/. Accessed 1 May 2014

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modelling—a review of hydrological, geomorphological, and biological applications. Hydrol Process 5:3–30. doi:10.1002/hyp.3360050103

    Article  Google Scholar 

  • Nearing MA (1997) A single, continuous function for slope steepness influence on soil loss. Soil Sci Soc Am J 61:917–919

    Article  Google Scholar 

  • Panagos P, Van Liedekerke M, Jones A, Montanarella L (2012) European soil data centre: response to European policy support and public data requirements. Land Use Policy 29:329–338. doi:10.1016/j.landusepol.2011.07.003

    Article  Google Scholar 

  • Panagos P, Meusburger K, Ballabio C, Borrelli P, Alewell C (2014a) Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci Total Environ 479:189–200. doi:10.1016/j.scitotenv.2014.02.010

    Article  Google Scholar 

  • Panagos P, Meusburger K, Van Liedekerke M, Alewell C, Hiederer R, Montanarella L (2014b) Assessing soil erosion in Europe based on data collected through a European Network. Soil Sci Plant Nutr 60:15–29. doi:10.1080/00380768.2013.835701

    Article  Google Scholar 

  • Panagos P, Ballabio C, Borrelli P, Meusburger K, Klik A, Rousseva S, Perčec Tadić M, Michaelides S, Hrabalíková M, Olsen P, Aalto J, Lakatos M, Rymszewicz A, Dumitrescu A, Beguería S, Alewell C (2015) Rainfall erosivity in Europe. Sci Total Environ 511:801–814. doi:10.1016/j.scitotenv.2015.01.008

    Article  Google Scholar 

  • PEST (2014) Model-independent parameter estimation and uncertainty analysis. http://www.pesthomepage.org/. Accessed 1 May 2014

  • Petan S (2010) Meritve in modeliranje erozivnosti padavin kot parametra erozije tal = Measurements and spatial modelling of rainfall erosivity as a soil erosion factor, PhD Thesis, University of Ljubljana, p. 205 (In Slovene)

  • Petan S, Rusjan S, Vidmar A, Mikoš M (2010) The rainfall kinetic energy–intensity relationship for rainfall erosivity estimation in the Mediterranean part of Slovenia. J Hydrol 391:314–321. doi:10.1016/j.jhydrol.2010.07.031

    Article  Google Scholar 

  • Petkovšek G (2002) Kvantifikacija in modeliranje erozije tal z aplikacijo na povodju Dragonje = Modelling and Quantification of Soil Erosion with Application to the Dragonja Catchment, PhD Thesis, University of Ljubljana, p. 205 (In Slovene)

  • Petkovšek G, Mikoš M (2004) Estimating the R factor from daily rainfall data in the sub-Mediterranean climate of southwest Slovenia. Hydrol Sci J-J-des Sci Hydrol 49:869–877. doi:10.1623/hysj.49.5.869.55134

    Google Scholar 

  • Ranzi R, Thanh Hung L, Rulli MC (2012) A RUSLE approach to model suspended sediment load in the Lo river (Vietnam): effects of reservoirs and land use changes. J Hydrol 422:17–29. doi:10.1016/j.jhydrol.2011.12.009

    Article  Google Scholar 

  • Renard KG et al (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE). Agriculture Handbook No. 703. US Department of Agriculture, Washington

    Google Scholar 

  • Richter G (1991) The Mosel region—nature, land use and soil erosion problems on both sides of the border between Germany and Luxembourg. Forschungsstelle Bodenerosion der Universität Trier 10:7–24

    Google Scholar 

  • Saygin SD, Ozcan AU, Basaran M, Timur OB, Dolarslan M, Yilman FE, Erpul G (2014) The combined RUSLE/SDR approach integrated with GIS and geostatistics to estimate annual sediment flux rates in the semi-arid catchment, Turkey, China. Environ Earth Sci 71:1605–1618. doi:10.1007/s12665-013-2565-y

    Article  Google Scholar 

  • Shi ZH, Ai L, Fang NF, Zhu HD (2012) Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: a case study in the Three Gorges Area, China. J Hydrol 438:156–167. doi:10.1016/j.jhydrol.2012.03.016

    Article  Google Scholar 

  • Szilassi P, Jordan G, van Rompaey A, Csillag G (2006) Impacts of historical land use changes on erosion and agricultural soil properties in the Kali Basin at Lake Balaton, Hungary. Catena 68:96–108. doi:10.1016/j.catena.2006.03.010

    Article  Google Scholar 

  • Tang Y, Reed P, Wagener T, van Werkhoven K (2007) Comparing sensitivity analysis methods to advance lumped watershed model identification and evaluation. Hydrol Earth Syst Sci 11:793–817. doi:10.5194/hess-11-793-2007

    Article  Google Scholar 

  • Ulaga F (2005) Monitoring suspendiranega materiala v slovenskih rekah = Monitoring of suspended matter in Slovenian rivers. Acta hydrotehnica 23:117–127 (In Slovene)

    Google Scholar 

  • van der Knijff JM, Jones RJA, Montanarella L (2000) Soil erosion risk : assessment in Europe. European Soil Bureau, European Commission, Belgium

    Google Scholar 

  • Van Oost K, Govers G, Desmet P (2000) Evaluating the effects of changes in landscape structure on soil erosion by water and tillage. Landsc Ecol 15:577–589. doi:10.1023/a:1008198215674

    Article  Google Scholar 

  • Van Rompaey AJJ, Verstraeten G, Van Oost K, Govers G, Poesen J (2001) Modelling mean annual sediment yield using a distributed approach. Earth Surf Process Landf 26:1221–1236. doi:10.1002/esp.275

    Article  Google Scholar 

  • Van Rompaey AJJ, Govers G, Puttemans C (2002) Modelling land use changes and their impact on soil erosion and sediment supply to rivers. Earth Surf Process Landf 27:481–494. doi:10.1002/esp.335

    Article  Google Scholar 

  • Van Rompaey A, Krasa J, Dostal T, Govers G (2003) Modelling sediment supply to rivers and reservoirs in Eastern Europe during and after the collectivisation period. Hydrobiologia 494:169–176. doi:10.1023/a:1025410230907

    Article  Google Scholar 

  • Van Rompaey A, Bazzoffi P, Jones RJA, Montanarella L (2005) Modeling sediment yields in Italian catchments. Geomorphology 65:157–169. doi:10.1016/j.geomorph.2004.08.006

    Article  Google Scholar 

  • Van Rompaey A, Krasa J, Dostal T (2007) Modelling the impact of land cover changes in the Czech Republic on sediment delivery. Land Use Policy 24:576–583. doi:10.1016/j.landusepol.2005.10.003

    Article  Google Scholar 

  • Verstraeten G (2006) Regional scale modelling of hillslope sediment delivery with SRTM elevation data. Geomorphology 81:128–140. doi:10.1016/j.geomorph.2006.04.005

    Article  Google Scholar 

  • Verstraeten G, Prosser IP (2008) Modelling the impact of land-use change and farm dam construction on hillslope sediment delivery to rivers at the regional scale. Geomorphology 98:199–212. doi:10.1016/j.geomorph.2006.12.026

    Article  Google Scholar 

  • Verstraeten G, Van Oost K, Van Rompaey A, Poesen J, Govers G (2002) Evaluating an integrated approach to catchment management to reduce soil loss and sediment pollution through modelling. Soil Use Manag 18:386–394. doi:10.1079/sum2002150

    Article  Google Scholar 

  • Verstraeten G, Prosser IP, Fogarty P (2007) Predicting the spatial patterns of hillslope sediment delivery to river channels in the Murrumbidgee catchment, Australia. J Hydrol 334:440–454. doi:10.1016/j.jhydrol.2006.10.025

    Article  Google Scholar 

  • Walling DE (1983) The sediment delivery problem. J Hydrol 65:209–237. doi:10.1016/0022-1694(83)90217-2

    Article  Google Scholar 

  • Williams JR (1975) Sediment routing from agricultural watersheds. Water Resour Bull 11:965–974. doi:10.1111/j.1752-1688.1975.tb01817.x

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. Agriculture Handbook No. 507. US Department of Agriculture, Washington

    Google Scholar 

  • Zorn M (2009) Erosion processes in Slovene Istria—part 1: Soil erosion. Acta Geographica Slovenica-Geografski Zbornik 49:39–68. doi:10.3986/ags49102

    Article  Google Scholar 

  • ZVSS (1978) Vodnogospodarske osnove Slovenije. Zveza vodnih skupnosti Slovenije, Ljubljana

Download references

Acknowledgments

We wish to thank the Slovenian Environment Agency (ARSO) and Ministry of agriculture and the environment (MKO) for making the relevant data used in this study publically available on their web site. The results of the study are part of the Faculty of Civil and Geodetic Engineering’s (UL FGG) work on the European research project SedAlp, which is jointly financed by the European Union through the Alpine Space program and the Slovenian Research Agency (ARRS) through the research program P2-0180 Water science and technology, and Geotechnics. The research was also partially financially supported by the Slovenian Research Agency through the PhD grant of the first author (Bezak N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejc Bezak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezak, N., Rusjan, S., Petan, S. et al. Estimation of soil loss by the WATEM/SEDEM model using an automatic parameter estimation procedure. Environ Earth Sci 74, 5245–5261 (2015). https://doi.org/10.1007/s12665-015-4534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4534-0

Keywords

Navigation