Skip to main content

Assessment of the mobile forms of zinc and copper content in soil samples from areas of different land use on example of the Krasnogvardeisky District of the St. Petersburg

Abstract

The present study investigated the actual content of Zn and Cu mobile fractions (buffer extractable) in soils of different land use scenarios within the Krasnogvardeisky District of the Saint Petersburg (Russia). The data were obtained via Atomic Adsorption Spectrophotometry, analyzing ammonium acetate buffer extracts (pH 4.8) of soil samples collected. The buffer-extracted metals are considered to be the most mobile fractions at given soil pH conditions. The results have shown low concentrations of mobile Zn and Cu in soils of recreational, agricultural and even industrial areas, fluctuating relative to the local area soil background values (Zn = 1.2; Cu = 2.70 mg kg−1). Substantial levels of contamination were found in the loamy sand Technosol of residential land use amended with composted municipal solid wastes and savage sludge. Calculated geo-accumulation indices (I geo), pollution indices (PI) and contamination factors (C f) were of the higher values, indicating moderate to extremely high pollution levels with the mobile trace metals. Median topsoil metal concentrations three times exceeded the maximal permissible concentrations for soils (Zn = 23.00; Cu = 3.00 mg kg−1), reaching the maximal values of 69.58 mg kg−1 for Zn and 10.17 mg kg−1 for Cu, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Al Obaidy AHMJ, Al Mashhadi AAM (2013) Heavy metal contaminations in urban soil within Baghdad City, Iraq. J Environ Prot 4:72–82

    Article  Google Scholar 

  • ATSDR (2005) Toxicological profile for zinc. US Department of Health and Human Services, Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=302&tid=54. Accessed 27 Aug 2014

  • ATSDR (2011) Toxic substances portal—copper. http://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=206&tid=37. Accessed 28 Aug 2014

  • Bradl H (2005) Heavy metals in the environment: origin, interaction and remediation: origin, interaction and remediation, vol 6. Academic, USA

    Google Scholar 

  • Bremner JM, Breitenbeck GA (1983) A simple method for determination of ammonium in semimicro-Kjeldahl analysis of soils and plant materials using a block digester 1. Commun Soil Sci Plant Anal 14:905–913

    Article  Google Scholar 

  • Brümmer GW (1986) Heavy metal species, mobility and availability in soils. Springer, Berlin

    Book  Google Scholar 

  • Brümmer G, Tiller KG, Herms U, Clayton PM (1983) Adsorption—desorption and/or precipitation—dissolution processes of zinc in soils. Geoderma 31:337–354. doi:10.1016/0016-7061(83)90045-9

    Article  Google Scholar 

  • Calabrese EJ et al (1989) How much soil do young children ingest: an epidemiologic study. Regul Toxicol Pharmacol 10:123–137. doi:10.1016/0273-2300(89)90019-6

    Article  Google Scholar 

  • Chen T-B et al (2005) Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 60:542–551

    Article  Google Scholar 

  • Covelo EF, Vega FA, Andrade ML (2007) Competitive sorption and desorption of heavy metals by individual soil components. J Hazard Mater 140:308–315

    Article  Google Scholar 

  • Dashko R, Aleksandrova O, Kotyukov P, Shidlovskaya A (2011) Features of the engineering-geological conditions of St. Petersburg. Urb dev Geotech Eng 13:25–71

  • Di Stefano C, Ferro V, Mirabile S (2010) Comparison between grain-size analyses using laser diffraction and sedimentation methods. Biosyst Eng 106:205–215

    Article  Google Scholar 

  • Dorsey A, Ingerman L, Swarts S (2004) Toxicological profile for copper. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry

  • Elinder C, Piscator M (1986) Zinc handbook on the toxicology of metals 2:664–679

    Google Scholar 

  • Fedotov PS, Savonina EY, Wennrich R, Ladonin DV (2007) Studies on trace and major elements association in soils using continuous-flow leaching in rotating coiled columns. Geoderma 142:58–68. doi:10.1016/j.geoderma.2007.07.014

    Article  Google Scholar 

  • Förstner U, Ahlf W, Calmano W, Kersten M (1990) Sediment criteria development. Springer, Berlin

    Book  Google Scholar 

  • Gagarina E, Rastvorova O, Schastnaya L, Kasatkina G, Fedorova N, Chukov S, Rusakov A (2008) Soils of the Russian plain natural zones: a textbook. St. Petersburg State University, St. Petersburg

    Google Scholar 

  • Ge Y, Murray P, Hendershot WH (2000) Trace metal speciation and bioavailability in urban soils. Environ Pollut 107:137–144

    Article  Google Scholar 

  • GN 2.1.7.2041-06 (2006) The maximum permissible concentration (MPC) of chemical substances in the soil. State sanitary-epidemiological rules and standards (in Russian) [Predelno dopustimye koncentracii (PDK) ximicheskix veshhestv v pochve]

  • Goldhaber SB (2003) Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol 38:232–242

    Article  Google Scholar 

  • Gorkiy A, Petrova E (2007) Contamination of Saint-Petersburg soils with heavy metals. The Russian geo-ecological center. Online document. http://www.eng.rgec.ru/articles/?PHPSESSID=birbcp87rv7d095soa02ir9sv4. Accessed 28 Aug 2014

  • GOST 17.4.1.02-83 (2008) Nature protection. Soils. Classification of chemicals for pollution control. State standard (in Russian) [Oxrana prirody. pochvy. Klassifikaciya ximicheskix veshhestv dlya kontrolya zagryazneniya]

  • GOST 17.4.4.02-84 (2008) Nature protection. Soils. Methods for sampling and preparation of soil for chemical, bacteriological and helmintological analysis. State standard (in Russian) [oxrana prirody. pochvy. metody otbora i podgotovki prob dlya ximicheskogo, bakteriologicheskogo, gelmintologicheskogo analiza]

  • Guidance for the sanitary-chemical studies of soil (standard materials) (1993) State Committee for Sanitary and Epidemiological Surveillance, Moscow (in Russian) [Rukovodstvo po sanitarno-ximicheskomu issledovaniyu pochvy’ (normativny’e materialy’)]

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Hendershot WH, Duquette M (1986) A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Sci Soc Am J 50:605–608

    Article  Google Scholar 

  • Iuss Working Group WRB (2006) World reference base for soil resources. World Soil Resources Report 103

  • Jalali M, Khanlari ZV (2006) Mobility and distribution of zinc, cadmium and lead in calcareous soils receiving spiked sewage sludge. Soil Sediment Contam 15:603–620

    Article  Google Scholar 

  • Kabata-Pendias A (1993) Behavioural properties of trace metals in soils. Appl Geochem 8:3–9

    Article  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants. CRC, USA

    Book  Google Scholar 

  • Krishna AK, Govil PK (2008) Assessment of heavy metal contamination in soils around Manali industrial area, Chennai. South India Environ Geol 54:1465–1472

    Article  Google Scholar 

  • Linde M, Bengtsson H, Öborn I (2001) Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water Air Soil Pollut Focus 1:83–101

    Article  Google Scholar 

  • Lodygin ED, Chukov SN, Beznosikov VA, Gabov DN (2008) Polycyclic aromatic hydrocarbons in soils of Vasilievsky Island (St. Petersburg) Eurasian. Soil Sci 41:1321–1326

    Google Scholar 

  • Loska K, Cebula J, Pelczar J, Wiechuła D, Kwapuliński J (1997) Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water reservoir in Poland. Water Air Soil Pollut 93:347–365

    Google Scholar 

  • Lu SG, Bai SQ (2010) Contamination and potential mobility assessment of heavy metals in urban soils of Hangzhou, China: relationship with different land uses. Environ Earth Sci 60:1481–1490

    Article  Google Scholar 

  • Ma LQ, Rao GN (1997) Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. J Environ Qual 26:259–264

    Article  Google Scholar 

  • Maksimova A, Nesterov D, Finarov D (2012) Contamination of Soil of Krasnogvardeiskii District of St. Petersburg with heavy metals. IZVESTIA: Herzen University Journal of Humanities and Sciences, pp 104–109

  • McGrath SP (1987) Long-term studies of metal transfers following application of sewage sludge. Special publications of the British Ecological Society

  • Moore R (1978) Bleeding gastric erosion after oral zinc sulphate. BMJ 1:754

    Article  Google Scholar 

  • Müller G (1998) Chemical decontamination of dredged materials, combustion residues, soil and other materials contaminated with heavy metals. In: Proceedings of the 2nd internetional TNO/BMFT conference on contaminated soils, vol 2, p 1

  • Philipp R, Hughes AO, Robertson MC (1982) Stomach cancer and soil metal content. Br J Cancer 45:482

    Article  Google Scholar 

  • Prechthai T, Parkpian P, Visvanathan C (2008) Assessment of heavy metal contamination and its mobilization from municipal solid waste open dumping site. J Hazard Mater 156:86–94

    Article  Google Scholar 

  • RAIS (2009) The Risk Assessment Information System. University of Tennessee. http://rais.ornl.gov/tools/tox_profiles.html. Accessed 27 Aug 2014

  • Roney N, Osier M, Paikoff SJ, Smith CV, Williams M, De Rosa CT (2006) ATSDR evaluation of the health effects of zinc and relevance to public health. Toxicol Ind Health 22:423–493

    Article  Google Scholar 

  • Sadovnikova L, Otabbong E, Iakimenko O, Nilsson I, Persson J, Orlov D (1996) Dynamic transformation of sewage sludge and farmyard manure components. 2. Copper, lead and cadmium forms in incubated soils. Agric Ecosyst Environ 58:127–132

    Article  Google Scholar 

  • Schrauzer GN, White DA, Schneider CJ (1977) Cancer mortality correlation studies-IV: associations with dietary intakes and blood levels of certain trace elements, notably se-antagonists. Bioinorg Chem 7:35–56

    Article  Google Scholar 

  • Shrivastava SK, Banerjee DK (2004) Speciation of metals in sewage sludge and sludge-amended soils Water. Air Soil Pollut 152:219–232

    Article  Google Scholar 

  • Smirnova L, Platonova S, Kerzum A (2010) Chemical manufactures of St. Petersburg in pre-revolutionary period. Probl Mod Econ 1:485–498

    Google Scholar 

  • Stocks P, Davies RI (1964) Zinc and copper content of soils associated with the incidence of cancer of the stomach and other organs. Br J Cancer 18:14

    Article  Google Scholar 

  • Stolbova N (1998) Atlas of the Krasnogvardeisky District: Bolshaya Okhta, Malaya Okhta, Rzhevka, Porohovyie, Polyustrovo. Karta, Saint-Petersburg (in Russian) [Atlas Krasnogvardejskogo rajona: Bolshaya Oxta, Malaya Oxta, Rzhevka, Poroxovye, Polyustrovo]

  • The official website of the St. Petersburg Government. Krasnogvardeisky District. http://gov.spb.ru/gov/terr/krasnogvard. Accessed 27 Aug 2014

  • Ufimtseva MD, Terekhina NV, Abakumov EV (2011) The physicochemical characterization of the urban soils in the Central District of St. Petersburg. Vestnik of St. Petersburg State University 7(4):85–97 (in Russian) [Fiziko-ximicheskaya xarakteristika urbanozemov tsentral’nogo rajona Sankt-Peterburga]

  • Ure A, Davidson C (2008) Chemical speciation in the environment. Wiley, London

    Google Scholar 

  • US EPA SC (2002) Child-specific exposure factors handbook. US Environmental Protection Agency, Washington

    Google Scholar 

  • US EPA (2011a) Exposure factors handbook final edn. US Environmental Protection Agency, Washington

    Google Scholar 

  • US EPA SC (2011b) Screening levels for chemical contaminants. US Environmental Protection Agency. http://www.epa.gov/region9/superfund/prg/index.html. Accessed 28 Aug 2014

  • Van Wijnen JH, Clausing P, Brunekreef B (1990) Estimated soil ingestion by children. Environ Res 51:147–162

    Article  Google Scholar 

  • Venugopal B, Luckey TD (1978) Metal toxicity in mammals. Volume 2. Chemical toxicity of metals and metalloids. Plenum, USA

    Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Soil Sci Plant Nutr 10:268–292

    Article  Google Scholar 

  • Vorobeva L (2015) Chemical analysis of soil. MSU publishing, Moscow

    Google Scholar 

  • Wilcke W, Müller S, Kanchanakool N, Zech W (1998) Urban soil contamination in Bangkok: heavy metal and aluminium partitioning in topsoils. Geoderma 86:211–228

    Article  Google Scholar 

  • Zyirin N, Zborischuk Y (1981) General patterns of distribution of trace elements mobile forms in soils of the European part of the USSR. Trace elements in soils of the USSR 1:6–9 (in Russian) [Obshhie zakonomernosti raspredeleniya podvizhnyx form mikroelementov v pochvax evropejskoj chasti SSSR]

Download references

Acknowledgments

This work was supported by Russian foundation for basic research Project No. 12-04-33017 and by St. Petersburg State University research Grant No. 1.37.151.2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Shamilishvili.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shamilishvili, G.A., Abakumov, E.V. & Ryumin, A.G. Assessment of the mobile forms of zinc and copper content in soil samples from areas of different land use on example of the Krasnogvardeisky District of the St. Petersburg. Environ Earth Sci 74, 3417–3431 (2015). https://doi.org/10.1007/s12665-015-4379-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4379-6

Keywords

  • Heavy metals in urban soils
  • HMs mobility
  • Pollution assessment