Advertisement

Environmental Earth Sciences

, Volume 74, Issue 3, pp 2041–2054 | Cite as

Reconstruction of deglaciation of Northern Mongolia for the last 330 ka BP, inferred from ostracod stable isotope records from Lake Khubsugul

  • A. P. FedotovEmail author
  • A. V. Ignat’ev
  • T. A. Velivetskaya
Thematic Issue
  • 205 Downloads

Abstract

We have compared δ18O and δ13C compositions of ostracod valves with elemental and grain size records of bottom sediments from the drill core KDP-01 (Northern Mongolia, NM) formed for the last 330 ka BP. The increase in the δ18O values, a high content of Br, and a low percentage of clay particles were found to positively correspond with high lake bio-productivity and “warm” marine isotope stages (MIS-3, 5, 7, and 9) and visa versa during “cold” MIS-stages. Positive δ13C values have been linked with high inflowing dissolved inorganic carbonates, and forest-steppe vegetation seems to be evidenced during “cold” MIS stages (MIS-2, 4, 6, and 8). Sharp depletions in the δ18O values on 1.5–2.5 ‰ occurring during the ends of MIS-6 and MIS-4 could be induced by glacier meltwater discharge into Lake Khubsugul. However, shifts in the δ18O values were not significant in MIS-2 and MIS-8, based on our assumption that the inflow rates of glacier meltwater were low due to the relatively small sizes of glaciers in the NM during these stages. During MIS-2, Northern Mongolian glaciers were the smallest in sizes due to high regional aridity. The climate condition in MIS-3 was not typically favorable for a “warm” MIS-stage, while glaciers or snow patches formed in MIS-4 most likely were still in the NM. As a result, isotopically depleted δ18O meltwater was supplied into Lake Khubsugul at the period.

Keywords

Stabile oxygen and carbon isotopes Ostracods Bottom sediments Khubsugul Northern Mongolia Pleistocene 

Notes

Acknowledgments

This study was supported by the Program of the FANO No. VIII.76.1.6, IP SB RAS No. 50. Thanks are also due to M.A. Grachev and A.I. Khanchuk, for their help in initiating this research investigation; S.M. Krapivina and A.E. Poberezhnaya for collecting ostracod samples from sediments; and M.A Phedorin and G.A. Ziborova for discussion on elemental and grain compositions of the KDP-01 core.

Conflicts of interest

None.

References

  1. An Z (2000) The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev 19:171–187CrossRefGoogle Scholar
  2. Andrews JE, Riding R, Dennis PF (1997) The stable isotope record of environmental and climatic signals in modern terrestrial microbial carbonates from Europe. Palaeogeogr Palaeoclimatol Palaeoecol 129:171–189CrossRefGoogle Scholar
  3. Arkhipov SA (2000) Main geologic events of the late Pleistocene (West Siberia). J Geol Geophys 41:792–799 (In Russian)Google Scholar
  4. Back S, De Batist M, Kirillov P, Strecker MR, Vanhauwaert P (1998) The Frolikha Fan: a Large Pleistocene Glaciolacustrine Outwash Fan in Northern Lake Baikal, Siberia. J Sediment Res Sec A Sediment Petrol Process 68:841–849CrossRefGoogle Scholar
  5. BDP Members (Baikal Drilling Project Group) (2000) Late Cenozoic paleoclimate record in bottom sediments of Lake Baikal. Russ Geol Geophys 41:1–29Google Scholar
  6. Bender ML (2002) Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth Planet Sci Lett 204:275–289CrossRefGoogle Scholar
  7. Bogoyavlensky BA (ed) (1989) Atlas of Lake Khubsugul. GUGK, Moscow (In Russian)Google Scholar
  8. Bronshtein ZS (1947) Ostracodes des eaux douces. Faune de L’URSS. Edition de l’Academie des Sciences de L’URSS, Moscow–Leningrad, vol 2, p 339Google Scholar
  9. Cheng X, Tian J, Wang P (2004) Data report: Stable isotopes from Site 1143. In: Prell WL, Wang P, Blum P, Rea DK, Clemens SC (eds) Proceedings ODP, Sci Results vol 184, pp 1–8. http://www-odp.tamu.edu/publications/184_sr/volume/chapters/221.pdf
  10. Cheng H, Zhang PZ, Spötl C, Edwards RL, Cai YJ, Zhang DZ, Sang WC, Tan M, An ZS (2012) The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys Res Lett 39:L01705Google Scholar
  11. Colman SM, Peck JA, Karabanov EB, Carter SJ, Bradbury JP, King JW, Williams DF (1995) Continental climate response to orbital forcing from biogenic silica records in Lake Baikal. Nature 378:769–771CrossRefGoogle Scholar
  12. Coplen TB, Kendall C, Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238CrossRefGoogle Scholar
  13. Darling WG, Bath AH, Gibson JJ, Rozanski K (2005) Isotopes in Palaeoenvironmental Research. In: Leng MJ (ed) Springer, Dordrecht, The NetherlandsGoogle Scholar
  14. Decrouy L, Vennemann TW, Ariztegui D (2012) Sediment penetration depths of epi- and infaunal ostracods from Lake Geneva (Switzerland). Hydrobiologia 688:5–23CrossRefGoogle Scholar
  15. Fedotov AP, De Batist M, Shapron E, De Ryker К, Pauls T (2002) Seismic profiling of the sediments of Lake Khubsugul. Dokl Earth Sci 382:261–263 (In Russian)Google Scholar
  16. Fedotov AP, Semenov MY, Osipov EY, Vorobyova SS, Golobokova LP (2003) Evidence of lake Khubsugul volume decrease due to climate aridization in the Upper Pleistocene. Z Berl Paläobiol Abh 4:88–97Google Scholar
  17. Fedotov AP, Chebykin EP, Semenov MY, Vorobyova SS, Osipov EY, Golobokova LP, Pogodaeva TV, Zheleznyakova TO, Grachev MA, Tomurhuu D, Oyunchimeg TS, Narantsetseg TS, Tomurtogoo O, Dolgikh PT, Arsenyuk MI, De Batist M (2004a) Changes in the volume and salinity of lake Khubsugul (Mongolia) in response to global climate changes in the upper Pleistocene and the Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 209:245–257CrossRefGoogle Scholar
  18. Fedotov AP, Kazansky AYu, Tomurhuu D, Matasova GG, Ziborova GA, Zheleznyakova TO, Vorobyova SS, Phedorin MA, Goldberg EL, Oyunchimeg TS, Narantsetseg TS, Vologina EG, Yuldashev AA, Kalugin IA, Tomurtogoo O, Grachev MA (2004b) A 1 My record of paleoclimates from lake Khubsugul, Mongolia. Eos Trans 85:387–390CrossRefGoogle Scholar
  19. Fedotov AP, Ignat’ev AV, Poberezhnaya AE, Velivetskaya TA, Ziborova GA, Otinova EL, Krapivina SM, Fedorin MA (2006) Oxygen and Carbon isotope variations in ostracode shells from Lake Hubsugul (Mongolia) and regional paleoclimate changes for the last 140 ka. Dokl Earth Sci 409A(6):994–996CrossRefGoogle Scholar
  20. Fedotov AP, Phedorin MA, De Batist M, Ziborova GA, Kazansky AYU, Semenov MYU, Matasova GG, Khabuev AV, Kugakolov SA, Rodyakin SV, Krapivina SM, Pouls T (2008) A 450-ka-long record of glaciation in Northern Mongolia based on studies at Lake Khubsugul: high-resolution reflection seismic data and grain-size variations in cored sediments. J Paleolimnol 39:335–348CrossRefGoogle Scholar
  21. Feng F, Li Z, Zhang M, Jin S, Dong Z (2013) Deuterium and oxygen 18 in precipitation and atmospheric moisture in the upper Urumqi River Basin, eastern Tianshan Mountains. Environ Earth Sci 68:1199–1209CrossRefGoogle Scholar
  22. Filippi ML, Lambert P, Hunziker J, Kübler B, Bernasconi S (1999) Climatic and anthropogenic influence on the stable isotope record from bulk carbonates and ostracodes in Lake Neuchâtel, Switzerland, during the last two millennia. J Paleolimnol 21:19–34CrossRefGoogle Scholar
  23. Forsström L (2001) Duration of interglacials: a controversial question. Quat Sci Rev 20:1577–1586CrossRefGoogle Scholar
  24. Geiger W, Otero M, Rossi V (1998) Clonal ecological diversity. In: Martens K (ed) Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys Publ, Leiden, pp 243–256Google Scholar
  25. Gillespie AR, Burke RM, Komatsu G, Bayasgalan A (2008) Late Pleistocene glaciers in Darhad Basin, northern Mongolia. Quat Res 69:169–187CrossRefGoogle Scholar
  26. Goldberg EL, Chebykin EP, Vorobyova SS, Grachev MA (2005) Uranium signals of paleoclimate humidity recorded in sediments of Lake Baikal. Dokl Earth Sci 400:52–56Google Scholar
  27. Goldberg EL, Phedorin MA, Chebykin EP, Zolotarev KB, Zhuchenko NA (2007) Decade–centenary resolution records of climate changes in East Siberia from elements in the bottom sediments of lake Baikal for the last 150 kyr. Nucl Instrum Methods A 575:193–195CrossRefGoogle Scholar
  28. Grachev MA, Likhoshwai EV, Vorobyova SS, Khlystov OM, Bezrukova EV, Veinberg EV, Goldberg EL, Granina LZ, Kornakova EG, Lazo FI, Levina OV, Letunova PP, Otinov PV, Pirog VV, Fedotov AP, Iaskevich SA, Bobrov VA, Sukhorukov FV, Rezchikov VI, Fedorin MA, Zolotarev KV, Kravchinsky VA (1997) Signals of the paleoclimates of upper Pleistocene in the sediments of Lake Baikal. J Geol Geophys 38:957–980 (In Russian)Google Scholar
  29. Griffiths HI (1995) European Quaternary freshwater ostracoda: a biostratigraphic and palaeobiogeographic primer. Scopolia 34:1–168Google Scholar
  30. Grosswald MG, Kuhle M (1994) Impact of glaciations on Lake Baikal. Int Proj Paleolimnol Late Cenozoic Clim Newsl 8:48–60Google Scholar
  31. Grygar T, Blahova A, Hradil D, Bezdička P, Kadlec J, Schnabl P, Swann G, Oberhänsli H (2007) Lake Baikal climatic record between 310 and 50 ky BP: interplay between diatoms, watershed weathering and orbital forcing. Palaeogeogr Palaeoclimatol Palaeoecol 250:50–67CrossRefGoogle Scholar
  32. Horvatinčić N, Bronić IK, Obelić B (2003) Differences in the 14C age, δ13C and δ18O of Holocene tufa and speleothem in the Dinaric Karst. Palaeogeogr Palaeoclimatol Palaeoecol 193:139–157CrossRefGoogle Scholar
  33. Imbrie J, McIntyre A, Mix A (1989) oceanic response to orbital forcing in the late Quaternary: observational and experimental strategies climate and geo-sciences. NATO ASI Ser 285:121–164Google Scholar
  34. Karabanov EB, Prokopenko AA, Williams DF, Colman SM (1998) Evidence from Lake Baikal for Siberian glaciation during Oxygen-Isotope Substage 5d. Quat Res 50:46–55CrossRefGoogle Scholar
  35. Karabanov EB, Prokopenko AA, Williams DF, Khursevich GK (2000) Evidence for mid-Eemian cooling in continental climatic record from Lake Baikal. J Paleolimnol 23:365–371CrossRefGoogle Scholar
  36. Kashiwaya K, Ochiai S, Sumino G, Tsukamoto T, Szyniszewska A, Yamamoto M, Sakaguchi A, Hasebe N, Sakai H, Watanabe T, Kawai T (2010) Climato-hydrological fluctuations printed in long lacustrine records in Lake Hövsgöl, Mongolia. Quat Int 219:178–187CrossRefGoogle Scholar
  37. Kazansky AYu, Fedotov AP, Matasova GG, Yuldashev AA, Ziborova GA, Zheleznyakova TO, Vologina EG, Ts Oyunchimeg, Ts Narantsetseg, Tomurhuu D (2005) First paleomagnetic results from the bottom sediments of Lake Hovsgol based on drilling data. J Geol Geophys 46:384–390 (In Russian)Google Scholar
  38. Keatings KW, Heaton THE, Holmes JA (2002) Carbon and oxygen isotope fractionation in non-marine ostracods: results from a ‘natural culture’ environment. Geochim Cosmochim Acta 66:1701–1711CrossRefGoogle Scholar
  39. Keigwin LD, Curry WB, Lehman SJ, Johnsen S (1994) The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago. Nature 371:323–326CrossRefGoogle Scholar
  40. Kim ST, O’Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim Cosmochim Acta 61:3461–3475CrossRefGoogle Scholar
  41. Krivonogov SK, Bezrukova EV, Takahara H, Riedel F (2003) The Hövsgöl Lake in the Late Pleistocene and Holocene: on-land geologic evidences for the change of its level. In: Kashiwaya K (ed) Long Continental Records from Lake Baikal. Springer, Tokyo, pp 187–206CrossRefGoogle Scholar
  42. Krivonogov SK, Sheinkman VS, Mistruykov AA (2005) Stages in the development of the Darhad dammed lake (Northern Mongolia) during the Late Pleistocene and Holocene. Quat Int 136:83–94CrossRefGoogle Scholar
  43. Krivonogov SK, Yi S, Kashiwaya K, Kim JC, Narantsetseg T, Oyunchimeg T, Safonova IY, Kazansky AY, Sitnikova T, Kim JY, Hasebe N (2012) Solved and unsolved problems of sedimentation, glaciation and paleolakes of the Darhad Basin, Northern Mongolia. Quat Sci Rev 56:142–163CrossRefGoogle Scholar
  44. Kulakov VS (1981) Drevnee i sovremennoe oledenenija severnoj Mongolii (Prihubsugulie) [Ancient and modern glaciations of the North Mongolia (Trans-Khubsugulia)]. In: Losev NF (ed) Prirodnie usloviya i resursi Prikhubsuguliya vMNR. Irkutsk (In Russian)Google Scholar
  45. Kuznetsova LP (1978) Perenos vlagi v atmosfere nad territoriey SSSR [Transfer of moisture over the territory of the USSR]. In: Drozdov OA (ed) Nauka, Moscow (In Russian)Google Scholar
  46. Leng MJ, Marshall JD (2004) Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quat Sci Rev 23:811–831CrossRefGoogle Scholar
  47. Lister GS (1988) Stable Isotopes from lacustrine ostracoda as tracers for continental palaeoenvironments. In: De Deckker P, Colin J-P, Peypouquet J-P (eds) Ostracoda in the Earth Sciences. Elsevier, Amsterdam, pp 201–218Google Scholar
  48. Liu T, Ding Z (1998) Chinese loess and the paleomonsoon. Earth Planet Sci 26:111–145CrossRefGoogle Scholar
  49. Loutre MF, Berger A (2003) Marine Isotope Stage 11 as an analogue for the present interglacial. Glob Planet Change 36:209–217CrossRefGoogle Scholar
  50. Lu Y, An CB, Wang Z, Zhao J, Wei H, Tao S, Huang W, Ma M (2013) Mid-Holocene climate change in the eastern Xinjiang region indicated by the grain size and stable isotope record from Lake Barkol, northwest China. Environ Earth Sci 68:2163–2169CrossRefGoogle Scholar
  51. Mackay AW, Swann GEA, Brewer TS, Leng MJ, Morley DW, Piotrowska N, Rioual P, White D (2011) A reassessment of late glacial—Holocene diatom oxygen isotope record from Lake Baikal using a geochemical mass-balance approach. J Quat Sci 26(6):627–634CrossRefGoogle Scholar
  52. McKenzie JA (1985) Carbon isotopes and productivity in the lacustrine and marine environment. In: Stumm W (ed) Chemical Processes in Lakes. Wiley, New York, pp 99–118Google Scholar
  53. Meng Y, Liu G (2013) Stable isotopic information for hydrological investigation in Hailuogou watershed on the eastern slope of Mount Gongga, China. Environ Earth Sci 69:29–39CrossRefGoogle Scholar
  54. Morley DW, Leng MJ, Mackay AW, Sloan HJ (2005) Late glacial and Holocene environmental change in the Lake Baikal region documented by oxygen isotopes from diatom silica. Glob Planet Change 46:221–233CrossRefGoogle Scholar
  55. Nakazawa F, Konya K, Kadota T, Ohata T (2015) Depositional and summer snow melting features in 2007–2011 on the upstream side of Potanin Glacier, Mongolian Altai, reconstructed by pollen analysis. TI Glacier in Central Asia. Environ Earth Sci (this issue)Google Scholar
  56. NGRIP Members (2004) High resolution Climate Record of the Northern Hemisphere back into the last Interglacial Period. Nature 431:147–151 http://www.glaciology.gfy.ku.dk/data/NGRIP_d18O_50yrs.txt
  57. Nugteren G, Vandenberghe J (2004) Spatial climatic variability on the Central Loess Plateau (China) as recorded by grain size for the last 250 kyr. Glob Planet Change 41:185–206CrossRefGoogle Scholar
  58. Osipov EYu, Grachev MA, Mats VD, Khlystov OM, Breitenbach S (2003) Mountaint glaciers of the Pleistocene last glacial maximum in the Northwestern Barguzin range (Northern Lake Baikal): paleoglacial reconstruction). Russ Geol Geophys 44(7):652–663Google Scholar
  59. Phedorin MA, Goldberg EL, Grachev MA, Levina OL, Khlystov OM, Dolbnya IP (2000) The comparison of biogenic silica, Br and Nd distributions in the sediments of Lake Baikal as proxies of changing paleoclimates of the last 480 ky. Nucl Instr Methods Phys Res A 448(1–2):400–406CrossRefGoogle Scholar
  60. Phedorin MA, Fedotov AP, Vorobieva SS, Ziborova GA (2008) Signature of long supercycles in the Pleistocene history of Asian limnic systems. J Paleolimnol 40:445–452CrossRefGoogle Scholar
  61. Poberezhnaya AE, Fedotov AP, Sitnikova TYA, Semenov MYU, Ziborova GA, Otinova EL, Khabuev AV (2006) Paleoecological and paleoenvironmental record of the Late Pleistocene record of Lake Khubsugul (Mongolia) based on ostracod remains. J Paleolimnol 36:133–149CrossRefGoogle Scholar
  62. Prokopenko AA, Bonvento VJ (2009) Carbonate stable isotope signals in the 1-Ma sedimentary record of the HDP-04 drill core from Lake Hovsgol, NW Mongolia. Quat Int 205:53–64CrossRefGoogle Scholar
  63. Prokopenko AA, Kuzmin MI, Williams DF, Gelety VF, Kalmychkov GV, Gvozdkov AN, Solotchin PA (2005) Basin-wide sedimentation changes and deglacial lake-level rise in the Hovsgol basin, NW Mongolia. Quat Int 136:59–69CrossRefGoogle Scholar
  64. Prokopenko AA, Hinnov LA, Williams DF, Kuzmin MI (2006) Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quat Sci Rev 25:3431–3457CrossRefGoogle Scholar
  65. Ricketts RD, Johnson TC, Brown ET, Rasmussen KA, Romanovsky VV (2001) The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr Palaeoclimatol Palaeoecol 176:207–227CrossRefGoogle Scholar
  66. Rozanski K, Araguas-Araguas L, Gonfiantini R (1992) Relation between long-term trends of oxygen-18 isotope, composition of precipitation and climate. Science 258:981–985CrossRefGoogle Scholar
  67. Rozanski K, Araguas-Araguas L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation, in climate change in continental isotopic records. Geophysical Monograph 78. American Geophysical Union, pp 1–36Google Scholar
  68. Ruddiman WF (2003) Orbital insolation, ice volume, and greenhouse gases. Quat Sci Rev 22:1597–1629CrossRefGoogle Scholar
  69. Schwalb A (2003) Lacustrine ostracodes as stable isotope recorders of late-glacial and Holocene environmental dynamics and climate. J Paleolimnol 29:265–351CrossRefGoogle Scholar
  70. Schwalb A, Lister GS, Kelts K (1994) Ostracode carbonate δ18O and δ13C signatures of hydrological and climatic changes affecting Lake Neuchâtel, Switzerland, since the latest Pleistocene. J Paleolimnol 11:3–17CrossRefGoogle Scholar
  71. Shchetnikov AA (2001) Structure of Relief and Neotectonics of the Tunka Rift. Abstract of Ph.D. Thesis, Irkutsk, p 19. (in Russian)Google Scholar
  72. Shornikov EI (1986) The new taxa of the ostracode Limnocytheridae from Far-Eastern and Central Asian water bodies. In: Bottom organisms of the Far East. Vladivostok: FEB Ac Sci USSR: pp 19–29 (In Russian)Google Scholar
  73. Swann GE, Mackay AW, Leng MJ, Demory F (2005) Climatic change in Central Asia during MIS 3/2: a case study using biological responses from Lake Baikal. Glob Planet Change 46:235–253CrossRefGoogle Scholar
  74. Tamburini F, Adatte T, Föllmi K, Bernasconi SM, Steinmann P (2003) Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0–140,000 years): mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea. Mar Geol 201:147–168CrossRefGoogle Scholar
  75. Thompson LG, Yao T, Davis ME, Henderson KA, Mosley-Thompson E, Lin P-N, Beer J, Synal H-A, Cole-Dai J, Bolzan JF (1997) Tropical climate instability: the Last Glacial Cycle from a Qinghai-Tibetan ice core. Science 276:1821–1825CrossRefGoogle Scholar
  76. Thompson LG, Mosley-Thompson E, Davis MA, Mashiotta TA, Henderson KA, Lin P-N, Tandong Y (2006) Ice core evidence for asynchronous glaciation on the Tibetan Plateau. Quat Int 154–155:3–10CrossRefGoogle Scholar
  77. Touveny N, Beaulleu J-L, Bonifay E, Creer KM, Guiot J, Icole M, Johnsen S, Jouzel J, Reille M, Williams T, Williamson D (1994) Climate variations in Europe over the past 140 kyr deduced from frock magnetism. Nature 371:503–506CrossRefGoogle Scholar
  78. Urabe A, Tateishi M, Inouchi Y, Matsuoka H, Inoue T, Dmytriev A, Khlystov OM (2004) Lake-level changes during the past 100,000 years at Lake Baikal, southern Siberia. Quat Res 62:214–222CrossRefGoogle Scholar
  79. Urabe J, Sekino T, Hayami Y, Maruo M, Tsujimura S, Kumagai M, Boldgiv B, Goulden CE (2006) Some biological and chemical characteristics of Lake Hovsgol. In: Goulden CE, Stinikova T, Gelbaus J, Boldgive B (eds) The Geology, Biodiversity and Ecology of Lake Hovsgol (Mongolia). Backhuys Publishers, Leiden, pp 387–402Google Scholar
  80. Volkov IA, Orlova LA (2000) Radiocarbon dating of the Karginian-Sartanian and Holocene in the southeast of West Siberia. J Geol Geophys 41:1428–1442 (In Russian)Google Scholar
  81. von Grafenstein U, Erlenkeuser H, Müller J, Kleinmann-Eisenmann A (1992) Oxygen isotope records of benthic ostracods in Bavarian lake sediments. Naturwissenschaften 79:145–152CrossRefGoogle Scholar
  82. von Grafenstein U, Erlenkeuser H, Kleinmann A, Muller J, Trimborn P (1994) High-frequency climatic oscillations during the last deglaciation as revealed by oxygen-isotope records of benthic organisms (Ammersee, southern Germany). J Paleolimnol 11:349–357CrossRefGoogle Scholar
  83. von Grafenstein U, Erlernkeuser H, Trimborn P (1999) Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for paleoclimate studies. Palaeogeogr Palaeoclimatol Palaeoecol 148:133–152CrossRefGoogle Scholar
  84. Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the East Asian Monsoon over the past 224,000 years. Nature 451:1090–1093. doi: 10.1038/nature06692 CrossRefGoogle Scholar
  85. Watanabe T, Minoura K, Watanabe F, Shichi K, Horiuchi K, Kakegawa T, Kawai T (2012) Last glacial to post glacial climate changes in continental Asia inferred frommulti-proxy records (geochemistry, clay mineralogy, and paleontology) from Lake Hovsgol, northwest Mongolia. Glob Planet Change 88–89:53–63CrossRefGoogle Scholar
  86. Xia J, Haskell BJ, Engstrom DR, Ito E (1997a) Holocene climate reconstructions from tandem trace-element and stable isotope composition of ostracodes from Coldwater Lake, North Dakota, USA. J Paleolimnol 17:85–100CrossRefGoogle Scholar
  87. Xia J, Haskell BJ, Engstrom DR, Ito E (1997b) Geochemistry of ostracode calcite: 1. an experimental determination of oxygen isotope fractionation. Geochim Cosmochim Acta 61:377–382CrossRefGoogle Scholar
  88. Yao TD, Masson-Delmotte V, Jouze J, Stievenard M, Sun WZ, Jiao KQ (1999) Relationships between d18O in precipitation and surface air temperature in the Urumiqi River Basin, east Tianshan Mountains, China. Geophys Res Lett 26(23):3473–3476CrossRefGoogle Scholar
  89. Yeh HW, Wang WM (2001) Factors affecting the isotopic composition of organic matter. (1) Carbon isotopic composition of terrestrial plant materials. Proc Nat Sci Council ROC(B). 25:137–147 http://nr.stic.gov.tw/ejournal/ProceedingB/v25n3/137-147.pdf
  90. Zhuchenko NA, Chebykin EP, Goldberg EL, Stepanova OG (2007) High-Resolution Record of Uranium Isotopic Composition of Paleo-Baikal Water during the Last 100 ka. Dokl Earth Sci 414:630–633CrossRefGoogle Scholar
  91. Zolotarev AG, Kulakov VS (1976) Istoria rasvitia reliefa [History of relief]. In: Sodnom N, Losev NF (eds) Prirodnie usloviya i resursi Prikhubsuguliya v MNR. Irkutsk (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. P. Fedotov
    • 1
    • 3
    Email author
  • A. V. Ignat’ev
    • 2
    • 3
  • T. A. Velivetskaya
    • 2
    • 3
  1. 1.Limnological Institute of the Siberian Branch of RASIrkutskRussia
  2. 2.Far East Geological Institute of the Far East Branch of RASVladivostokRussia
  3. 3.Institute of Petroleum Geology of the Siberian Branch of RASNovosibirskRussia

Personalised recommendations