Environmental Earth Sciences

, Volume 74, Issue 3, pp 2055–2063 | Cite as

Impact of glacier changes on ecosystem of proglacial lakes in high mountain regions of East Siberia (Russia)

  • S. S. VorobyevaEmail author
  • V. A. Trunova
  • O. G. Stepanova
  • V. V. Zvereva
  • S. K. Petrovskii
  • M. S. Melgunov
  • T. O. Zheleznyakova
  • L. G. Chechetkina
  • A. P. Fedotov
Thematic Issue


Mountain lakes in East Siberia have been studied for recent changes in water chemistry, turbidity and diatom assemblages preserved in bottom sediments. We performed a regional analysis of the relative effect of climate and glacier changes on change in diatom diversity and supply of meltware in proglacial lakes. We analysed sediment records from East Siberian glacier lakes using geochemical and diatoms proxies. We found that dramatic changes in communities and abundance of diatoms and biogenic proxy could be induced by low nutrient concentrations in glacial lakes and high turbidity due to active degradation of glaciers and snow patches as a result of the global increase in temperature in the Northern Hemisphere. Our evidences show that diatoms have been gradually decreased since ca. the 1880s. A significant tendency towards diatom reducing occurred at high summer regional temperatures. This tendency may be attributed to the fact that glaciers and snow patches thawed actively in East Siberia during ca. 1880–1958, which was induced by the beginning of the Recent Warming (ca. 1850–1860) and a long period of relatively warm regional climate from ca. 1900 to 1960.


Diatoms Bottom sediments Glaciers Glacier flour East Sayan Kodar East Siberia 



We are grateful to Enushchenko I. V. (LIN SB RAS)., Isaev V. A., Rogov M. A. and Nikishin C. V. (SNR «Vitimsky») who took part in the coring campaign at Lake Oron in 2013. This study was supported by the Program of the FANO No. VIII.76.1.6, IP SB RAS No, 50, RFBR-13-05-0022.


  1. Adamenko MM, Gutak YaM, Solomina ON (2015) Glacial history of the Kuznetsky Alatau mountains. TI Glacier in Asia. Environ Earth Sci (this issue)Google Scholar
  2. Back S, Strecker MR (1998) Asymmetric late Pleistocene glaciations in the North Basin of the Baikal Rift, Russia. J Geol Soc 155:61–69CrossRefGoogle Scholar
  3. Battarbee RW, Grytnes J-A, Thompson R, Appleby PG, Catalan J, Korhola A, Birks HJB, Heegaard E, Lami A (2002) Comparing palaeolimnological and instrumental evidence of climate change for remote mountain lakes over the last 200 years. J Paleolimnol 28:161–179CrossRefGoogle Scholar
  4. BDP Members (Baikal Drilling Project Group) (2000) Late Cenozoic paleoclimate record in bottom sediments of Lake Baikal. Russ Geol Geophys 41:1–29Google Scholar
  5. BDP-99 (Baikal Drilling Project Members) (2005) A new Quaternary record of regional tectonic, sedimentation and paleoclimate changes from drill core BDP-99 at Posolskaya Bank, Lake Baikal. Quater Inter 136:105–121CrossRefGoogle Scholar
  6. Bezrukova EV, Bogdanov YA, Williams DF, Granina LZ, Grachev MA, Ignatova NV, Karabanov EB, Kuptsov VM, Kurylev AV, Letunova PP, Likhoshway EV, Chernyaeva GP, Shimaraeva MK, Yakujshin AO (1991) A dramatic change of the ecological system of Lake Baikal in the Holocene. Dokl Akad Nauk SSSR 321:1032–1037 (In Russian)Google Scholar
  7. Binford MW (1990) Calculation and uncertainty analysis of 210Pb dates for PIRLA project cores. J Paleolimnol 3:253–267CrossRefGoogle Scholar
  8. Bradbury JP, Bezrukova YV, Chernyaeva GP, Colman SM, Khursevich G, King JW, Likoshway YV (1994) A synthesis of post-glacial diatom records from Lake Baikal. J Paleolimnol 10:213–252CrossRefGoogle Scholar
  9. Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106:2929–2941CrossRefGoogle Scholar
  10. Catalan J, Ventura M, Brancelj A, Granados I, Thies H, Nickus U et al (2002) Seasonal ecosystem variability in remote mountain lakes: implications for detecting climatic signals in sediment records. J Paleolimnol 28:25–46CrossRefGoogle Scholar
  11. Chebykin EP, Osipov EY (2010) The elemental composition of snow and firn of the Soviet Geographers’ glacier and allied hydrological features (Kodar ridge). Led i Sneg 4:30–40 (In Russian)Google Scholar
  12. Curtis CJ, Botev I, Camarero L et al (2005) Acidification in European mountain lake districts: a regional assessment of critical load exceedance. Aquat Sci 67:237–251CrossRefGoogle Scholar
  13. D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res 111:D03103. doi: 10.1029/2005JD006352 Google Scholar
  14. Davydova NN (1985) Diatoms as indicators of Holocene lake environments. In: Trifonova IS (ed). Nauka, Leningrad (In Russian)Google Scholar
  15. Evans CD, Cullen JM, Alewell C, Kopácek J, Marchetto A, Moldan F, Prechtel A, Rogora M, Veselý J, Wright R (2001) Recovery from acidification in European surface waters. Hydrol Earth Syst Sci 5(3):283–297CrossRefGoogle Scholar
  16. Fedotov AP, Bezrukova EV, Vorobyova SS, Khlystov OM, Levina OV, Mizandrontsev IB, Mazepova GP, Semenov AR, Zheleznyakova TO, Krapivina SM, Chebykin EP, Grachev MA (2001) The sediments of Lake Khubsugul as history of paleoenvironmental records (paleoclimates) in the Holocene and the Upper Pleistocene. Russ Geol Geophys 42:384–390Google Scholar
  17. Fedotov AP, Chebykin EP, Semenov MY, Vorobyova SS, Osipov EY, Golobokova LP, Pogodaeva TV, Zheleznyakova TO, Grachev MA, Tomurhuu D, Oyunchimeg Ts, Narantsetseg Ts, Tomurtogoo O, Dolgikh PT, Arsenyuk MI, De Batist M (2004) Changes in the volume and salinity of lake Khubsugul (Mongolia) in response to global climate changes in the upper Pleistocene and the Holocene. Palaeogeogr Palaeoclimatol Palaeoecol 209:245–257CrossRefGoogle Scholar
  18. Fedotov AP, Phedorin MA, De Batist M, Ziborova GA, Kazansky AY, Semenov MY, Matasova GG, Khabuev AV, Kugakolov SA, Rodyakin SV, Krapivina SM, Pouls T (2008) A 450-ka long record of glaciation in Northern Mongolia based on studies at Lake Khubsugul: high-resolution reflection seismic data and grain-size variations in cored sediments. J Paleolimnol 39:335–348CrossRefGoogle Scholar
  19. Fedotov AP, Trunova VA, Zvereva VV, Maksimovskaya VV, Melgunov MS (2012) Reconstruction of glacier fluctuation (East Siberia, Russia) during the last 160 years based on high-resolution geochemical proxies from proglacial lake bottom sediments of the Baikalsky Ridge. Int J Environ Stud 69(5):806–815CrossRefGoogle Scholar
  20. Ganyushkin DA, Chistyakov FV, Kunaeva EP (2015) Fluctuation of glaciers in the South-East Russian Altai and North-West Mongolia Mountains since the Little Ice Age maximum. TI Glacier in Asia. Environ Earth Sci (this issue). doi: 10.1007/s12665-015-4301-2
  21. Gasiorowski M, Sienkiewicz E (2010) 20th century acidification and warming as recorded in two alpine lakes in the Tatra Mountains (South Poland, Europe). Sci Total Environ 408:1091–1101CrossRefGoogle Scholar
  22. Genkal SI, Bondarenko NA (2004) Bacillariophyta in plankton of mountain lakes in the River Lena watershed. 1. Centrophyceae. Botanicheskii zhurnal 10:1588–1593 (In Russian)Google Scholar
  23. Genkal SI, Bondarenko NA, Schur LA (2011) Diatoms in the lakes of the Southern and Northern Eastern Siberia. Rybinsky Dom Pechati, Rybinsk (In Russian)Google Scholar
  24. Gesierich D, Rott E (2012) Is diatom richness responding to catchment glaciation? A case study from Canadian headwater streams. J Limnol 71(1):72–83CrossRefGoogle Scholar
  25. Gleser SI, Makarova IV, Moisseeva AI, Nikolaev VA (eds) (1992) The diatoms of the USSR (fossil and recent). II (2). Nauka, S-Peterburg (In Russian)Google Scholar
  26. Grachev MA, Likhoshwai EV, Vorobiova SS, Khlystov OM, Bezrukova EV, Veinberg EV et al (1997) Signals of the paleoclimates of upper Pleistocene in the sediments of Lake Baikal. Russian Geol Geophys 35:994–1018 (In Russian)Google Scholar
  27. Hecker C, Meijde M, Meer FD (2010) Thermal infrared spectroscopy on feldspars—successes, limitations and their implications for remote sensing. Earth-Sci Rev 103:60–70CrossRefGoogle Scholar
  28. Intergovernmental Panel on Climate Change (IPCC) (2001) Climate change 2001: the scientific basis. Contribution of working group II to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  29. Intergovernmental Panel on Climate Change (IPCC) (2007) IPCC fourth assessment report: climate change 2007. Synthesis report (AR4). IPCC, GenevaGoogle Scholar
  30. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl E, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Küttel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49CrossRefGoogle Scholar
  31. Karabanov EB, Bezrukova EV, Granina LZ et al (1992) Climatic sedimentation rhythms of Baikal sediments. IPPCCE Newslett 6:21–30Google Scholar
  32. Kelly MG, King L, Jones RI, Barker PA (2008) Validation of diatoms as proxies for phytobenthos when assessing ecological status in lakes. Hydrobiologia 610:125–129CrossRefGoogle Scholar
  33. Liu X, Colman SM, Brown ET, Minor EC, Li H (2013) Estimation of carbonate, total organic carbon, and biogenic silica content by FTIR and XRF techniques in sediments lacustrine. J Paleolimnol 50:387–398CrossRefGoogle Scholar
  34. Marchetto A (1998) The study of high mountain lakes in the activity of the Istituto Italiano di Hidrobiologia. J Limnol 57:1–10Google Scholar
  35. Matveev AN, Samusenok VP, Rozhkova NA, Bondarenko NA, Kravtsova LS, Sheveleva NG et al (2006) Biota of Vitim state naturel reserve: structure of biota in aquatic ecosystems. Geo, Novosibirsk (In Russian)Google Scholar
  36. Meng Y, Liu G (2013) Stable isotopic information for hydrological investigation in Hailuogou watershed on the eastern slope of Mount Gongga, China. Environ Earth Sci 69:29–39CrossRefGoogle Scholar
  37. Milner AM, Petts GE (1994) Glacial rivers: physical habitat and ecology. Freshwater Biol 32:295–307CrossRefGoogle Scholar
  38. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  39. Muri G, Wakeham SG, Rose NL (2006) Records of atmospheric delivery of pyrolysis-derived pollutants in recent mountain lake sediments of the Julian Alps (NW Slovenia). Environ Pollut 139:461–468CrossRefGoogle Scholar
  40. Novikova ZS, Grinberg AM (1972) Kodar Khrebet (basins of River Chary and River Vitim). Katalog Lednikov SSSR. Catalogue of Glaciers of the USSR: Lena-Indigirka Basin, 17(2). Gidrometeoizdat, Leningrad (In Russian)Google Scholar
  41. Osborn TJ, Briffa KR (2006) The spatial extent of 20th century warmth in the context of the past 1200 years. Science 311:841–844CrossRefGoogle Scholar
  42. Osipov EY, Khlystov OM (2010) Glaciers and meltwater flux to Lake Baikal during the Last Glacial Maximum. Palaeogeogr Palaeoclimatol Palaeoecol 294:4–15CrossRefGoogle Scholar
  43. Osipov EY, Osipova OP (2014) Mountain glaciers of southeast Siberia: current state and changes since the Little Ice Age. Ann Glaciol 55(66):167–176CrossRefGoogle Scholar
  44. Osipov EY, Osipova OP (2015) Glaciers of the Levaya Sygykta River watershed, Kodar Ridge, southeastern Siberia, Russia: modern morphology, climate conditions and changes over the past decades. TI Glacier in Asia. Environ Earth Sci (this issue). doi: 10.1007/s12665-015-4352-4
  45. Osipov EY, Grachev MA, Mats VD, Khlystov OM, Breitenbach S (2003) Mountain glaciers of the Pleistocene Last Glacial Maximum in the Northwestern Barguzin Range (Nortern Lake Baikal): paleoglacial reconstruction. Russian Geol Geophys 7:652–663 (In Russian)Google Scholar
  46. Plastinin LA, Plusnin VM, Chernyshov NI (1993) Landsccape and sattelite studying of exogenous relief in the Kodar-Udokan Mountains area. Irkutsk University Press, Irkutsk (In Russian)Google Scholar
  47. Potapova MG, Charles DF, Ponader KC, Winter DM (2004) Quantifying species indicator values for trophic diatom indices: a comparison of approaches. Hydrobiologia 517:25–41CrossRefGoogle Scholar
  48. Preobrazhenskiy VS (1960) Kodar Glacial Area (Transbaykalia). IX section of the International Geophysical Year Program (Glaciology). Published by the Academy of Sciences of the USSR, Moscow (In Russian)Google Scholar
  49. Round FE, Crawford RM, Mann DG (1990) The Diatoms. Biology and morphology of the genera. Cambrige University Press, CambrigeGoogle Scholar
  50. Ruth P (1977) Ecology of freshwater. Diatoms and diatom communities. In: Werner D (ed) The biology of diatoms. Blackwell Scientific, London, pp 284–332Google Scholar
  51. Saros JE, Rose KC, Clow DW, Stephens VC, Nurse AB, Arnett HA, Stone JR, Williamson CE, Wolfe AP (2010) Melting Alpine glaciers enrich high-elevation lakes with reactive nitrogen. Environ Sci Technol 44:4891–4896CrossRefGoogle Scholar
  52. Sayer CD, Davidson TA, Jones JI, Langdon PG (2010) Combining contemporary ecology and palaeolimnology to understand shallow lake ecosystem change. Freshw Biol 55(3):487–499CrossRefGoogle Scholar
  53. Smol JP (2002) Pollution of lakes and rivers: a paleoenvironmental perspective. Arnold, LondonGoogle Scholar
  54. Sommaruga R, Kandolf G (2014) Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates. Sci Rep 4:4113. doi: 10.1038/srep04113 CrossRefGoogle Scholar
  55. Stepanova OG, Trunova VA, Zvereva VV, Melgunov MS, Fedotov AP (2015) Reconstruction of glacier fluctuations in the East Sayan, Baykalsky and Kodar Ridges (East Siberia, Russia) during the last 210 years based on high-resolution geochemical proxies from proglacial lake bottom sediments. TI Glacier in Asia. Environ Earth Sci (this issue). doi: 10.1007/s12665-015-4457-9
  56. Stokes CR, Shahgedanova M, Evans IS, Popovnin VV (2013) Accelerated loss of alpine glaciers in the Kodar Mountains, south-eastern Siberia. Global Planet Chang 101:82–96CrossRefGoogle Scholar
  57. Stolpovskaya VN, Soloncina EP, Zdanova AN (2006) Quantitative IR spectroscopic analysis of non-clay minerals from the bottom sediments of Lakes Baikal and Hovsgöl. Russian Geol Geophys 6:778–888Google Scholar
  58. Talib A, Abu Hasan Y, Recknagel F, v. der Molen D (2007) Patternising the alternate stable states of turbid versus clear-water dynamics by applying Kohonen artificial neural network. In: Oxley L and Kulasiri D (eds) MODSIM 2007 international congress on modelling and simulation, Modelling and Simulation Society of Australia and New Zealand, pp 74–80Google Scholar
  59. Tolotti M (2001) Phytoplankton and littoral epilithic diatoms in high mountain lakes of the Adamello-Brenta Regional Park (Trentino, Italy) and their relation to trophic status and acidification risk. J Limnol 60(2):171–188CrossRefGoogle Scholar
  60. Weilhoefer CL, Pan Y (2007) Relationships between diatoms and environmental variables in wetlands in the Willamette Valley, Oregon, USA. Wetlands 27(3):668–682CrossRefGoogle Scholar
  61. Wetzel RG, Likens GE (1991) Limnological analyses. Springer-Verlag, New YorkCrossRefGoogle Scholar
  62. Wille A, Sonntag B, Sattler B, Psenner R (1999) Abundance, biomass and size structure of the microbial assemblage in the high mountain lake Gossenköllesee (Tyrol, Austria) during the ice-free period. J Limnol 58(2):117–126CrossRefGoogle Scholar
  63. Zabelina MM, Kiselyev IA, Proshkina-Lavrenko AI, Shesukova VS (eds) (1951) Freshwater diatoms of the USSR, vol 4. Soviet Nauka, Moscow (In Russian)Google Scholar
  64. Zhu G, Pu T, He Y, Shi P, Zhang T (2013) Seasonal variations of major ions in fresh snow at Baishui Glacier No. 1, Yulong Mountain, China. Environ Earth Sci 69:1–10CrossRefGoogle Scholar
  65. Zhuchenko NA, Chebykin EP, Stepanova OG, Chebykin AP, Goldberg EL (2008) Microwave digestion of bottom sediments from Lake Baikal for the inductively coupled plasma mass-spectrometric determination of their elemental composition. J Anal Chem 63:943–949CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. S. Vorobyeva
    • 1
    Email author
  • V. A. Trunova
    • 2
  • O. G. Stepanova
    • 1
  • V. V. Zvereva
    • 2
  • S. K. Petrovskii
    • 1
  • M. S. Melgunov
    • 3
  • T. O. Zheleznyakova
    • 1
  • L. G. Chechetkina
    • 4
  • A. P. Fedotov
    • 1
  1. 1.Limnological Institute of the Siberian Branch of RASIrkutskRussia
  2. 2.Nikolaev Institute of Inorganic Chemistry of the Siberian Branch of RASNovosibirskRussia
  3. 3.Institute of Geology and Mineralogy of the Siberian Branch of RASNovosibirskRussia
  4. 4.Vitimsky State Natural ReserveBodayboRussia

Personalised recommendations