Environmental Earth Sciences

, Volume 74, Issue 2, pp 1547–1553 | Cite as

Selective membrane permeability and peroxidase activity response of lettuce and arugula irrigated with cyanobacterial-contaminated water

  • Micheline Kézia Cordeiro-Araújo
  • Mathias Ahii Chia
  • Talita Caroline Hereman
  • Fabiana Fumi Sasaki
  • Maria do Carmo Bittencourt-OliveiraEmail author
Original Article


Irrigation with microcystins-contaminated water has been shown to cause oxidative stress and negatively affect the development of vegetables. However, the effect of non-microcystins producing cyanobacteria on vegetables is yet to be investigated. In this study, the effects of microcystin-producing (MC+) and non-microcystin-producing (MC−) cyanobacterial (Microcystis aeruginosa) extracts on lettuce (Lactuca sativa L.) and arugula (Eruca sativa Mill.) were investigated. Chlorophyll production, peroxidase (POD) activity and selective membrane permeability of the vegetables were monitored after exposure to 0.6–12.5 µg L−1 MC+ for 15 days. For MC− extracts, an equivalent biomass of each MC+ extract concentration per total MCs concentration was also applied to the vegetables for 15 days. In arugula, exposure to both toxic and non-toxic cyanobacterial extracts resulted in higher POD activity than the control. However, in lettuce plants, significantly lower POD activities were recorded in the presence of MC+ and MC− extracts. Although both crude (MC+ and MC−) extracts increased plasma membrane electrical conductivity of the vegetables, the effect of MC+ extract was higher. Chlorophyll content of both vegetables was not significantly influenced by MC+ and MC− extracts. The results of the present study show that vegetables have variable responses to MC+ and MC− extracts of M. aeruginosa. Therefore, care must be taken to avoid the excessive use of M. aeruginosa contaminated water to irrigate vegetables, regardless of their MCs production potential.


Vegetables Contaminated water Enzyme activity Plasma membranes Cyanotoxins 



This research was supported by grants from FAPESP (2014/01934-0, 2013/11306-3), CNPq (470198/2011-7), FACEPE (AMD-0186-2.00/13) and CAPES.


  1. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701 CrossRefGoogle Scholar
  2. Babica P, Bláha L, Marsalek B (2006) Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J Phycol 42:9–20. doi: 10.1111/j.1529-8817.2006.00176.x CrossRefGoogle Scholar
  3. Bittencourt-Oliveira MC (2003) Detection of potential microcystin-producing cyanobacteria in Brazilian reservoirs with a mcyB molecular marker. Harmful Algae 2:51–60. doi: 10.1016/S1568-9883(03)00004-0 CrossRefGoogle Scholar
  4. Bittencourt-Oliveira MC, Kujbida P, Cardozo KHM, Carvalho VM, Moura AN, Colepicolo P, Pinto E (2005) A novel rhythm of microcystin biosynthesis is described in the cyanobacterium Microcystis panniformis Komárek et al. Biochem Biophys Res Commun 326:687–694. doi: 10.1016/j.bbrc.2004.11.091 CrossRefGoogle Scholar
  5. Bittencourt-Oliveira MC, Chia MA, Oliveira HSB, Cordeiro-Araújo MK, Molica RJR, Dias CTS (2015) Allelopathic interactions between microcystin-producing and non-microcystin-producing cyanobacteria and green microalgae: implications for microcystins production. J Appl Phycol 27:275–284. doi: 10.1007/s10811-014-0326-2 CrossRefGoogle Scholar
  6. Carillo S, Pieretti G, Bedini E, Parrilli M, Lanzetta R, Corsaro MM (2014) Structural investigation of the antagonist LPS from the cyanobacterium Oscillatoria planktothrix Fp1. Carbohydr Res 388:73–80. doi: 10.1016/j.carres.2013.10.008 CrossRefGoogle Scholar
  7. Chia AM, Chimdirim PK, Japhet WS (2015) Lead induced antioxidant response and phenotypic plasticity of Scenedesmus quadricauda (Turp.) de Brébisson under different nitrogen concentrations. J Appl Phycol 27:293–302. doi: 10.1007/s10811-014-0312-8 CrossRefGoogle Scholar
  8. Clark D, Durner J, Navarre DA, Klessig DF (2000) Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase. Mol Plant Microb Interact 13:1380–1384. doi: 10.1094/MPMI.2000.13.12.1380 CrossRefGoogle Scholar
  9. Cordeiro-Araújo MK, Bittencourt-Oliveira MC (2013) Active release of microcystins controlled by an endogenous rhythm in the cyanobacterium Microcystis aeruginosa. Phycol Res 61:1–6. doi: 10.1111/j.1440-1835.2012.00663.x CrossRefGoogle Scholar
  10. Crush JR, Briggs LR, Sprosen JM, Nichols SN (2008) Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass, clover, rape, and lettuce. Environ Toxicol 23:246–252. doi: 10.1002/tox.20331 CrossRefGoogle Scholar
  11. Ding WX, Shen HM, Ong CN (2000) Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin induced rapid apoptosis in rat hepatocytes. Hepatology 32:547–555 10/S0270-9139(00)07751-XCrossRefGoogle Scholar
  12. El Khalloufi F, Oufdou K, Lahrouni M, El Ghazali I, Saqrane S, Vasconcelos V, Oudra B (2011) Allelopatic effects of cyanobacteria extracts containing microcystins on Medicago sativa–Rhizobia symbiosis. Ecotoxicol Environ Saf 74:431–438. doi: 10.1016/j.ecoenv.2010.10.006 CrossRefGoogle Scholar
  13. El Khalloufi F, El Ghazali I, Saqrane S, Oufdou K, Vasconcelos V, Oudra B (2012) Phytotoxic effects of a natural bloom extract containing microcystins on Lycopersicon esculentum. Ecotoxicol Environ Saf 79:199–205. doi: 10.1016/j.ecoenv.2012.01.002 CrossRefGoogle Scholar
  14. Engene N, Rottacker EC, Kastovsky J, Byrum T, Choi H, Ellisman MH, Komárek J, Gerwick WH (2012) Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol 62:1171–1178. doi: 10.1099/ijs.0.033761-0 CrossRefGoogle Scholar
  15. Gorham PR, Mclachlan J, Hammer UT, Kim WK (1964) Isolation and culture of toxic strains of Anabaena flos-aquae (Lyngb.) de Bréb. Verh Int Verein Theor Angew Limnol 15:796–804Google Scholar
  16. Hereman TC, Bittencourt-Oliveira MC (2012) Bioaccumulation of microcystins in lettuce. J Phycol 48:1535–1537. doi: 10.1111/jpy.12006 CrossRefGoogle Scholar
  17. Huang W, Xing W, Li D, Liu W (2008) Microcystin-RR induced apoptosis in tobacco BY-2 suspension cells is mediated by reactive oxygen species and mitochondrial permeability transition pore status. Toxicol In Vitro 22:328–337. doi: 10.1016/j.tiv.2007.09.018 CrossRefGoogle Scholar
  18. Järvenpää S, Lundberg-Niinistö C, Spoof L, Sjövall O, Tyystjärvi E, Meriluoto J (2007) Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography–mass spectrometry. Toxicon 49:865–874. doi: 10.1016/j.toxicon.2006.12.008 CrossRefGoogle Scholar
  19. Kehr J-C, Picch DG, Dittmann E (2011) Natural product biosyntheses in cyanobacteria: a treasure trove of unique enzymes. Beilstein J Org Chem 7:1622–1635. doi: 10.3762/bjoc.7.191 CrossRefGoogle Scholar
  20. Koodkaew I, Yukari S, Matsuyama S, Matsumoto H (2012) Phytotoxic action mechanism of hapalocyclamide in lettuce seedlings. Plant Physiol Biochem 58:23–28. doi: 10.1016/j.plaphy.2012.06.002 CrossRefGoogle Scholar
  21. Kopittke PM, Blamey FPC, Wang P, Menzies NW (2011) Calculated activity of Mn2+ at the outer surface of the root cell plasma membrane governs Mn nutrition of cowpea seedlings. J Exp Bot 62:3993–4001. doi: 10.1093/jxb/err097 CrossRefGoogle Scholar
  22. Leão PN, Ramos V, Vale M, Machado JP, Vasconcelos VM (2012) Microbial community changes elicited by exposure to cyanobacterial allelochemicals. Microb Ecol 63:85–95. doi: 10.1007/s00248-011-9939-z CrossRefGoogle Scholar
  23. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer L, Douce R (eds) Methods in enzimology. Academic Press, London, pp 350–381Google Scholar
  24. MacAdam JW, Nelson CJ, Sharp RE (1992) Peroxidase activity in the leaf elongation zone of tall fescue. Plant Physiol 99:872–878CrossRefGoogle Scholar
  25. Mackintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192. doi: 10.1016/0014-5793(90)80245-E CrossRefGoogle Scholar
  26. McElhiney J, Lawton LA, Leifert C (2001) Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure. Toxicon 39:1411–1420. doi: 10.1016/S0041-0101(01)00100-3 CrossRefGoogle Scholar
  27. Mitrovic SM, Allis O, Furey A, James KJ (2005) Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chladophora fracta. Ecotoxicol Environ Saf 61:345–352. doi: 10.1016/j.ecoenv.2004.11.003 CrossRefGoogle Scholar
  28. Peuthert A, Chakrabarti S, Pflugmacher S (2007) Uptake of Microcystins-LR and -LF (Cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Environ Toxicol 22:436–442. doi: 10.1002/tox.20266 CrossRefGoogle Scholar
  29. Pflugmacher S (2002) Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ Toxicol 17:407–413. doi: 10.1002/tox.10071 CrossRefGoogle Scholar
  30. Pflugmacher S, Aulhorn M, Grimm B (2007) Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants. New Phytol 175:482–489. doi: 10.1111/j.1469-8137.2007.02144.x CrossRefGoogle Scholar
  31. Qiao W, Li C, Fan LM (2014) Cross-talk between nitric oxide and hydrogen peroxide in plant responses to abiotic stresses. Environ Exp Bot 100:84–93. doi: 10.1016/j.envexpbot.2013.12.014 CrossRefGoogle Scholar
  32. Saqrane S, Ouahid Y, Ghazali Y, Oudra B, Bouarab L, Campo FF (2009) Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: a laboratory experimental approach. Toxicon 53:786–796. doi: 10.1016/j.toxicon.2009.01.028 CrossRefGoogle Scholar
  33. Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds). Toxic cyanobacteria in water: a guide to the public health consequences, monitoring and management. J.E and FN Spon, London, pp 41–111Google Scholar
  34. Wang P, Kinraide TB, Zhou D, Kopittke PM, Peijnenburg WJGM (2011) Plasma membrane surface potential: dual effects upon ion uptake and toxicity. Plant Physiol 155:808–820. doi: 10.1104/pp.110.165985 CrossRefGoogle Scholar
  35. Wiegand C, Peuthert S, Pflugmacher S, Carmeli S (2002) Effect of microcin SF608 and microcystin-LR, two cyanobacterial compounds produced by Microcystis sp., on aquatic organisms. Environ Toxicol 17:400–406. doi: 10.1002/tox.10065 CrossRefGoogle Scholar
  36. Xue Y, Li Y, Yi N, Li H, Shi Z (2010) Investigations into the effects of microcystin-LR onthe growth and antioxidant enzymes in Chinese cabbage and rape. IEEE 978:4244–4713. doi: 10.1109/ICBBE.2010.5516409 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Micheline Kézia Cordeiro-Araújo
    • 1
    • 2
  • Mathias Ahii Chia
    • 1
  • Talita Caroline Hereman
    • 1
  • Fabiana Fumi Sasaki
    • 1
  • Maria do Carmo Bittencourt-Oliveira
    • 1
    • 2
    Email author
  1. 1.Department of Biological Sciences, Luiz de Queiroz College of AgricultureUniversity of São PauloPiracicabaBrazil
  2. 2.Botany Graduate Program, Rural and Federal University of PernambucoRecifeBrazil

Personalised recommendations