Skip to main content
Log in

Assessment of the state of soils, shallow sediments and groundwater salinity in Abi, Cross River State, Nigeria

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Abi area in Nigeria borders the salinity enriched Lower Benue Trough (LBT) and plans are currently underway to extend large-scale irrigation facilities under construction in the LBT to Abi area. In order to generate baseline soil and water salinity information about Abi area under non-irrigation condition, integrated information from constrained analyses of vertical electrical sounding data, two-dimensional electrical resistivity tomographies and laboratory analyses of soil and water samples were used to assess and map the spatial salinity distribution. Existence of widespread heterogeneities in the distribution of soil and water salinity between the shaly and sandy materials that dominate the shallow geology of the area was observed. Minimum values of water electrical conductivity (WEC) and total dissolved solids (TDS) were observed to be 19.2 μS/cm and 13 mg/L, respectively, in the sandstone-dominated areas. Maximum values of WEC and TDS were observed to be 931.0 μS/cm and 624 mg/L, respectively, within the shale-dominated areas. Soil electrical conductivity was observed to vary from 5.0 μS/cm in the sandstone areas to 14.0 μS/cm in the shale-dominated areas. Minimum and maximum soil pH observations were 4.53 in the shale-dominated area and 6.55 in the sandstone-dominated area, respectively. These results show that the water and soil resources in the area vary from fresh to slightly saline and non-saline to high salinity levels, respectively. Consequently, both resources are still good for agricultural purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acworth RI, Jorstad LB (2006) Integration of multi-channel piezometry and electrical tomography to better define chemical heterogeneity in a landfill leachate plume within a sand aquifer. J Contam Hydrol 83:200–220. doi:10.1016/j.jconhyd.2005.11.007

    Article  Google Scholar 

  • Adepelumi AA, Ako BD, Ajayi TR, Afolabi O, Omotoso EJ (2008) Delineation of saltwater intrusion into the freshwater aquifer of Lekki Peninsula, Lagos, Nigeria. J Environ Geol 56(5):927–933

    Article  Google Scholar 

  • Akpan AE, George NJ, George AM (2009) Geophysical investigation of some prominent gully erosion sites in Calabar, southeastern Nigeria and its implications to hazard prevention. Disaster Adv 2(3):46–50

    Google Scholar 

  • Akpan AE, Ugbaja AN, George NJ (2013) Integrated geophysical, geochemical and hydrogeological investigation of shallow groundwater resources in parts of the Ikom-Mamfe Embayment and the adjoining areas in Cross River State, Nigeria. J Environ Earth Sci 70(3):1435–1456. doi:10.1007/s12665-013-2232-3

    Article  Google Scholar 

  • Arango-Galván C, De la Torre-González B, Chávez-Segura RE, Tejero-Andrade A, Cifuentes-Nava G, Hernández-Quintero E (2011) Structural pattern of subsidence in an urban area of the southeastern Mexico Basin inferred from electrical resistivity tomography. Geofís Int 50(4):401–409

    Google Scholar 

  • Archie GE (1942) The electrical resistivity logs as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Eng J 146:54–62

    Google Scholar 

  • Barros R, Isidoro D, Aragüés R (2012) Three study decades on irrigation performance and salt concentrations and loads in the irrigation return flows of La Violada irrigation district (Spain). Agric Ecosyst Environ 151:44–52

    Article  Google Scholar 

  • Benkabbour B, Toto EA, Fakir Y (2004) Using DC resistivity method to characterize the geometry and the salinity of the Plioquaternary consolidated coastal aquifer of the Mamora plain, Morocco. J Environ Geol 45:518–526. doi:10.1007/s00254-003-0906-y

    Article  Google Scholar 

  • Benkhelil J (1982) Benue Trough and Benue Chain. Geol Mag J 119:115–168

    Google Scholar 

  • Beriss FE, Schjønning P, Keller T, Lamandé T, Etana A, de Jonge LW, Iversen BV, Arvidsson J, Forkman J (2012) Persistent effects of subsoil compaction on pore size distribution and gas. Soil Tillage Res 122:42–51. doi:10.1016/j.still.2012.02.005

    Article  Google Scholar 

  • Bhattacharya BB, Patra HP (1968) Direct current in geoelectric sounding, methods in geochemistry and geophysics 9. Elsevier, Amsterdam, p 136

    Google Scholar 

  • Bouwer H (1978) Groundwater Hydrology. McGraw-Hill Book Co, New York, p 480

    Google Scholar 

  • Bussain AE (1983) Electrical conductance in a porous medium. Geophysics 48(9):1258–1268

    Article  Google Scholar 

  • Cardarelli E, Cercato M, Cerreto A, Di Filippo G (2010) Electrical resistivity and seismic refraction tomography to detect buried cavities. Geophys Prospect J 58:685–695

    Article  Google Scholar 

  • Chambers JE, Wilkinson PB, Kuras O, Ford JR, Gunn DA, Meldrum PI, Pennington CVL, Weller AL, Hobbs PRN, Ogilvy RD (2011) Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland basin, UK. Geomorphology 125(4):472–484. doi:10.1016/j.geomorph.2010.09.017

    Article  Google Scholar 

  • Chang SW, Clement TP, Simpson MJ, Lee KK (2011) Does sea-level rise have an impact on saltwater intrusion? Adv Water Resour 34:1283–1291. doi:10.1016/j.advwatres.2011.06.006

    Article  Google Scholar 

  • De Groot-Hedlin C, Constable S (1990) Occam’s inversion to generate smooth, two dimensional models from magnetotelluric data. Geophysics 55:1613–1624

    Article  Google Scholar 

  • Ebong ED, Akpan AE, Onwuegbuche AA (2014) Estimation of geohydraulic parameters from fractured shale and sandstone aquifers of Abi (Nigeria) using electrical resistivity and hydrogeologic measurements. J Afr Earth Sc 96C:99–109. doi:10.1016/j.jafrearsci.201403.026

    Article  Google Scholar 

  • Edet A, Nganje TN, Ukpong AJ, Ekwere AS (2011) Groundwater chemistry and quality of Nigeria: A status review. Afr J Environ Sci Technol 5(13):1152–1169. doi:10.5897/AJESTX11.011

    Google Scholar 

  • Egboka BCE, Okpoko EI (1984). Gully erosion in the Agulu-Nanka region of Anambra State, Nigeria. In: Changes in African hydrology and water resources (Proceedings of the Harare Symposium, July 1984). IAHS Publication no 144

  • Egboka BC, Uma KO (1986) Hydrogeochemistry, contaminant transport and tectonic effects in the Okposi-Uburu salt lake area of Imo state, Nigeria. Hydrol Sci J 31(2):205–221

    Article  Google Scholar 

  • Ekwueme BN, Nyong EE, Petters SW (1995) Geological excursion guide book to Oban Massif, Calabar Flank and Mamfe Embayment, Southeastern Nigeria, 1st edn. Dechord Press, Calabar, p 36

    Google Scholar 

  • Eseme E, Agyingi CM, Foba-Tendo J (2002) Geochemistry and gneisses of brine emanations from cretaceous strata of the Mamfe Basin, Cameroon. J Afr Earth Sci 35(4):467–476

    Article  Google Scholar 

  • Gemail KS, El-Shishtawy AM, El-Alfy M, Ghoneim MF, Abd El-Bary MH (2011) Assessment of aquifer vulnerability to industrial waste water using resistivity measurements. A case study, along El-Gharbyia main drain, Nile Delta, Egypt. J Appl Geophys 75:140–150. doi:10.1016/j.jappgeo.2011.06.026

    Article  Google Scholar 

  • Gómez-Ortiz D, Martín-Velázquez S, Martín-Crespo T, Márquez A, Lillo J, López I, Carreño F, Martín-González F, Herrera R, De Pablo MA (2007) Joint application of ground penetrating radar and electrical resistivity imaging to investigate volcanic materials and structures in Tenerife (Canary Islands, Spain). J Appl Geophys 62:287–300. doi:10.1016/j.jappgeo.2007.01.002

    Article  Google Scholar 

  • Grisso R, Alley MM, Holshouser D, Thomason W (2009) Precision farming tools: soil electrical conductivity. Virginia Polytechnic Institute and State University, Virginia State

    Google Scholar 

  • Hamzah U, Samsudin AR, Malim EP (2007) Groundwater investigation in Kuala Selangor using vertical electrical sounding (VES) surveys. Environ Geol 51(8):1349–1359

    Article  Google Scholar 

  •  Hibbs BJ (2001) Geophysical and hydrochemical analysis of the White River alluvial aquifer. In: New Mexico Geological Society Guidebook, 52 nd Field Conference, Geology of the Llano Estacado. Crossby County, Texas, pp 309–316

  • Inoubli N, Gouasmia M, Gasmi M, Mharndi A, Ben Dhia H (2006) Integration of geological, hydrochemical and geophysical methods for prospecting thermal water resources: the case of the Hmeima region (central-western Tunisia). J Afr Earth Sc 46(3):180–186

    Article  Google Scholar 

  • Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon Press Inc, Oxford, p 519

    Google Scholar 

  • Levi E, Goldman M, Hadad A, Gvirtzman H (2008) Spatial delineation of groundwater salinity using deep time domain electromagnetic geophysical measurements: A feasibility study. Water Res Res 44:W12404. doi:10.1029/2007WR006459

    Article  Google Scholar 

  • Lobkovsky AE, Jensen B, Kudrolli A, Rothman DH (2004) Threshold phenomena in erosion driven by subsurface flow. J Geophys Res 109:F04010. doi:10.1029/2004JF000172

    Google Scholar 

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophys Prospect 44:131–152

    Article  Google Scholar 

  • Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187

    Article  Google Scholar 

  • Mao M, Chirwa EC, Chen T (2005) Vehicle roof crush modeling and validation. In: 5th European LS-DYNA users Conference. Birmingham

  • Metwaly M, Khalil M, Al-Sayed E, Osman S (2006) A hydrogeophysical study to estimate water seepage from northwestern Lake Nasser, Egypt. J Geophys Eng 3:21–27

    Article  Google Scholar 

  • Michael HA, Mulligan AE, Harvey CF (2005) Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 431:1145–1148

    Article  Google Scholar 

  • Minsley BJ, Ajo-Franklin J, Mukhopadhyay A, Morgan FD (2011) Hydrogeophysical methods for analyzing aquifer storage and recovery systems. Groundwater 49(2):250–269

    Article  Google Scholar 

  • Moore WS, de Oliveira J (2008) Determination of residence time and mixing processes of the Ubatuba, brazil, inner shelf waters using natural Ra isotopes. Estuar Coast Shelf Sci 76(3):512–521

    Article  Google Scholar 

  • Morreau C, Regnoult JM, Deruelle B, Robineau B (1987) A new tectonic model for the Cameroon Line, Central Africa. Tectonophysics 139:317–334

    Article  Google Scholar 

  • Myerchin GM, White DM, Lilly MR, Holland KM, Prokein P (2007) Lake survey data for the Kuparuk foothills region: Spring 2007. University of Alaska Fairbanks, Water and Environmental Research Center, Report INE/WERC 07.15. Fairbanks, Alaska

  • Nwankwoala HO (2011) Coastal aquifers of Nigeria: an overview of its management and sustainability considerations. J Appl Technol Environ Sanit 1(4):371–380

    Google Scholar 

  • Odigi MI, Amajor LC (2008) Origin of carbonate cement in cretaceous sandstones from Lower Benue Trough, Nigeria: evidence from petrography and stable isotope composition. Sci Afr 7(2):123–139

    Google Scholar 

  • Odigi MI, Amajor LC (2009) Geochemical characterization of cretaceous sandstones from the Southern Benue Trough, Nigeria. Chin J Geochem 28:044–054. doi:10.1007/s11631-009-0044-7

    Article  Google Scholar 

  • Ogilvy RD, Meldrum PI, Kuras O, Wilkinson PB, Chambers JE (2008) Advances in geoelectric imaging technologies for the measurement and monitoring of complex earth systems and processes. In: Proceedings 33rd International Geological Congress. Oslo, Norway

  • Okoyeh EI, Akpan AE, Egboka BCE, Okeke HI (2013) An assessment of the influences of surface and subsurface water level dynamics in the development of gullies in Anambra State, southeastern Nigeria. J Earth Interact 18:1–24

    Article  Google Scholar 

  • Olayinka AI, Yaramanci U (2000) Assessment of the reliability of 2D inversion of apparent resistivity data. Geophys Prospect 48(2):293–316. doi:10.1007/s10040-009-0503-6

    Article  Google Scholar 

  • Onwualu JN, Ukaegbu VU, Okengwu KO (2012) Source region inhomogeneity in igneous suite of Ishiagu, Southern Benue Trough, Nigeria. Arch Appl Sci Res 4(2):923–934

    Google Scholar 

  • Orellana E, Mooney AM (1966) Master tables and curves for vertical electrical sounding over layered structures. Interciencia, Escuela, p 159

    Google Scholar 

  • Papaioannou A, Plageras P, Dovriki E, Minas A, Krikelis V, Nastos PT, Kakavas K, Paliatsos AG (2007) Groundwater quality and location of productive activities in the region of Thessaly (Greece). Desalination 213:209–217. doi:10.1016/j.desal.0000.00.000

    Article  Google Scholar 

  • Poulsen SE, Rasmussen KR, Christensen NB, Christensen S (2010) Evaluating the salinity distribution of a shallow coastal aquifer by vertical multielectrode profiling (Denmark). Hydrogeol J 18(1):161–171. doi:10.1007/s10040-009-0503-6

    Article  Google Scholar 

  • Ragunath HM (1987) Ground water, 2nd edn. Wiley Eastern Ltd, New Delhi, p 563

    Google Scholar 

  • Rhoades JD, Chanduvi F, Lesch S (1999) Soil salinity assessment: methods and interpretation of electrical conductivity measurements. Food and Agriculture Organization of the United Nations vol. 57. pp 165

  • Richards LA (1954) Diagnosis and improvement of saline and alkali soils. In: Agricultural Handbook 60. USDA and IBH Publishing Co. Ltd, New Delhi. pp 98–99

  • Samsudin AR, Haryono A, Hamzah U, Rafek AG (2007) Salinity mapping of coastal groundwater aquifers using hydrogeochemical and geophysical methods: a case study from north Kelantan, Malaysia. Environ Geol 55(8):1737–1743. doi:10.1007/s00254-007-1124-9

    Article  Google Scholar 

  • Schutjens PMTM, Hanssen TH, Hettema MHH, Merour J, de Bree P, Coremans JWA, Helliesen G (2004) Compaction-induced porosity/permeability reduction in sandstone reservoirs: data and model for elasticity-dominated deformation. SPE Reserv Eval Eng 7(3):202–216. doi:10.2118/88441-PA

    Article  Google Scholar 

  • Sen PN, Goode PA, Sibbit A (1998) Electrical conduction in clay bearing sandstones at low and high salinities. J Appl Phys 63:4832–4840

    Article  Google Scholar 

  • Sikandar P, Bakhsh A, Arshad M, Rana T (2010) The use of vertical electrical sounding resistivity method for the location of low salinity groundwater for irrigation in Chaj and Rachna Doabs. J Environ Earth Sci 60:1113–1129. doi:10.1007/s12665-009-0255-6

    Article  Google Scholar 

  • Singh CK, Shashtri S, Mukherjee S (2011) Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Environ Earth Sci 62(7):1387–1405

    Article  Google Scholar 

  • Stephens DB (1996) Vadose Zone Hydrology. Lewis Publishers, Boca Raton 347 p

    Google Scholar 

  • Swarzenskis PW, Reich C, Kroeger KD, Baskaran M (2007) Ra and Rn isotopes as natural tracers of submarine groundwater discharge in Tampa Bay, Florida. Mar Chem 104:69–84. doi:10.1016/j.marchem.2006.08.001

    Article  Google Scholar 

  • Telford WM, Geldart LP, Sheriff RE (1990) Applied geophysics. Cambridge University Press, Cambridge 792 pp

    Book  Google Scholar 

  • Tijani MN (2004) Evolution of saline waters and brines in the Benue-Trough, Nigeria. J Appl Geochem 19:1355–1365. doi:10.1016/j.apgeochem.2004.01.020

    Article  Google Scholar 

  • Tijani MN (2008) Hydrochemical and stable isotopes compositions of saline groundwaters in the Benue Basin, Nigeria. In: Adelana S, MacDonald A (eds) Applied groundwater studies in Africa. IAH Selected papers on Hydrogeology vol. 13. pp 352–369

  • Tijani MN, Loehnert EP (2004) Exploitation and traditional processing techniques of brine salts in parts of the Benue Trough, Nigeria. Int J Miner Process 74:157–167

    Article  Google Scholar 

  • Tijani MN, Loehnert EP, Uma KO (1996) Origin of saline groundwaters in the Ogoja area, Lower Benue Basin. Nigeria. J Afr Earth Sci 23(2):237–252

    Article  Google Scholar 

  • Toushmalani R (2010) Application of geophysics in agriculture. Aust J Basic Appl Sci 4(12):6433–6439

    Google Scholar 

  • Udo EJ, Ibia TO, Ogunwale JA, Ano AO, Esu IE (2009) Manual of soil, plant and water analyses. Sibon Books Limited, Festac, Lagos, p 183

    Google Scholar 

  • Uma KO, Onuoha KM, Egboka BC (1990) Hydrochemical facies, groundwater flow pattern and origin of saline waters in parts of the western flank of the Cross River basin, Nigeria. In: Ofoegbu CO (ed) The Benue-Trough: structure and evolution. Vieweg Verlag, Braunschweig, pp 115–134

    Google Scholar 

  • Vandenbohede A, Luyten K, Lebbe L (2008) Impacts of global change on heterogeneous coastal aquifers: a case study in Belgium. J Coast Res 24(2A):160–170

    Article  Google Scholar 

  • Vandenbohede A, Van Houtte E, Lebbe L (2009) Sustainable groundwater extraction in coastal areas: a Belgian example. Environ Geol 57:735–747

    Article  Google Scholar 

  • Vender Velpen BPA (1988) A computer processing package for DC resistivity interpretation for an IBM compatibles. ITC J 4

  • Wang DY, Song YC, Zhang Y, Liu Y, Zhao ML, Qi T, Zhao JF (2012) An approach for the numerical computation of the reduction of the original porosity due to diagenetic and compaction processes in sandstone reservoirs. J Adv Mat Res 383–390:6057–6060. doi:10.4028/www.scientific.net/AMR.383-390.6057

    Google Scholar 

  • Weyl PK (1964) On the change in electrical conductance of seawater with temperature. Limnol Oceanogr 9:75–78

    Article  Google Scholar 

  • Wilkinson PB, Meldrum PI, Kuras O, Chambers JE, Holyoake SJ, Ogilvy RD (2010) High-resolution electrical resistivity tomography monitoring of a tracer test in a confined aquifer. J Appl Geophys 70:268–276. doi:10.1016/j.jappgeo.2009.08.001

    Article  Google Scholar 

  • Wood S, Sebastian K, Scherr SJ (2000) Soil resource condition. In: Wood S, Sebastian K, Scherr SJ (eds) Pilot analysis of global ecosystems. IFPRI and World Resources Institute, Washington

    Google Scholar 

  • World Health Organization (2004) Guidelines for drinking water quality, vol 1, recommendations, 2nd edn. WHO, Geneva, p 130

  • YihdegoY Webb J (2012) Modelling of seasonal and long-term trends in lake salinity in southwestern Victoria, Australia. J Environ Manage 112:149–159

    Article  Google Scholar 

  • Young MB, Gonneea ME, Fong DA, Moore WS, Herrera-Silveira J, Paytan A (2007) Characterizing sources of groundwater to a tropical coastal lagoon in a karstic area using Radium isotopes and water chemistry. Mar Chem 109:377–394

    Article  Google Scholar 

  • Zarroca M, Bach J, Linares R, Pellicer XM (2011) Electrical methods (VES and ERT) for identifying, mapping and monitoring different saline domains in a coastal plain region (Alt Empordà, Northern Spain). J Hydrol 409:407–422. doi:10.1016/j.jhydrol.2011.08.052

    Article  Google Scholar 

Download references

Acknowledgments

The authors will ever remain grateful to Late Prof. E. W. Mbipom for all his advice, encouragement and support while embarking on this research. All the suggestions and constructive criticisms from the anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony E. Akpan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akpan, A.E., Ebong, E.D. & Ekwok, S.E. Assessment of the state of soils, shallow sediments and groundwater salinity in Abi, Cross River State, Nigeria. Environ Earth Sci 73, 8547–8563 (2015). https://doi.org/10.1007/s12665-015-4014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4014-6

Keywords

Navigation