Skip to main content
Log in

Structural–geological and karst feature investigations of the limestone–flysch thrust-fault contact using low-frequency ground penetrating radar (Adria–Dinarides thrust zone, SW Slovenia)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Karstic thrust edge, a pronounced geomorphologic step, which is a result of the tectonostratigraphic evolution of the active Adria–Dinarides thrust zone, represents a major obstacle for the planned new railway route Divača–Koper. Thus, the geotechnical and structural properties as well as the geometry of the thrust-fault planes in this area are of great importance. Since geological mapping cannot give insight into the subsurface to reveal a complex 3D structure, and the numerous boreholes needed to investigate the area would be too expensive and time consuming, the application of a geophysical method such as ground penetrating radar (GPR) is needed. To test the method for determining near surface features and detecting low-angle inclined thrusts, a low frequency GPR system with 50 MHz rough terrain antenna was used to record 13 GPR profiles along all three floors of the Črnotiče quarry, where the spatial position of the Socerb thrust fault that separates limestones above and flysch layers below is relatively well documented. The profiles were positioned across selected existing boreholes. The GPR results were correlated with borehole data as well as geological mapping results. The GPR provided not only precise information on the geometry of the Socerb thrust fault, but was also very useful for establishing the position of some known as well as several potential cavities, both air- and sediment-filled. In areas further from the thrust-fault zone, where the limestone is less tectonically damaged, it was also possible to determine apparent dip angles of the strata, which after reconstruction matched the true dips gathered from geological mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Annan AP (2002) GPR—history, trends and future developments. Subsurf Sens Technol Appl 3:253–270

    Article  Google Scholar 

  • Beidinger A, Decker K, Roch KH (2010) The Lassee segment of the Vienna Basin fault system as a potential source of the earthquake of Carnuntum in the fourth century A.D. Int J Earth Sci 100(6):1315–1329

    Article  Google Scholar 

  • Beres M, Luetscher M, Olivier R (2001) Integration of ground-penetrating radar and microgravimetric methods to map shallow caves. J Appl Geophys 46:249–262

    Article  Google Scholar 

  • Blindow N, Eisenburger D, Illich B, Petzold H, Richer T (2007) Ground penetrating radar. In: Knödel K, Lange G, Voigt HJ (eds) Environmental geology, handbook of field methods and case studies. Springer, Berlin, pp 283–335

    Google Scholar 

  • Celarc B, Jurkovšek B, Placer L and Milanič B (2012) Tectonics of the region between Dinarides and Istria: Influence of plate tectonics on the infrastructure construction (2. railway track Divača–Koper) 6th Meeting of Slovenian Geotechnicians, Lipica, Slovenia, 14–15 June 2012, 49–66, SloGeD

  • Carriere SD, Chalikakis K, Senechal G, Danquigny C, Emblanch C (2013) Combining electrical resistivity tomography and ground penetrating radar to study geological structuring of karst unsaturated zone. J Appl Geophys 94:31–41

    Article  Google Scholar 

  • Chalikakis K, Plagnes V, Guerin R, Valois R, Bosch FP (2011) Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeol J 19:1169–1180

    Article  Google Scholar 

  • Cunningham KJ (2004) Application of ground-penetrating radar, digital optical borehole images, and cores for characterization of porosity hydraulic condustivity and paleokarst in the Biscayne aquifer, southeastern Florida, USA. J Appl Geophys 44:61–76

    Article  Google Scholar 

  • Daniels DJ (1996) Surface Penetrating Radar, 8, 4 edn. Institute of Electrical and Electronic Engineers, London, pp 165–182

    Google Scholar 

  • Daniels DJ (2004) Ground Penetrating Radar, 2nd edn. The Institution of Electrical Engineers, London

    Book  Google Scholar 

  • Davis JD, Annan AP (1989) Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys Prospect 37(5):531–551

    Article  Google Scholar 

  • dos Reis JA, de Castro DL, de Jesus TES, Filho FPL (2014) Characterization of collapsed paleocave systems using GPR attributes. J Appl Geophys 103:43–56

    Article  Google Scholar 

  • Estrada-Medina H, Tuttl W, Graham RC, Allen MF, Jimenez-Osornio JJ (2010) Identification of underground karst features using ground-penetrating radar in Northern Yucatán, México. Vadose Zone J 9:653–661

    Article  Google Scholar 

  • Forte E, Pipan M (2007) GPR mass characterisation by attenuation analysis. Extended abstract. 26th Convegno Nazionale, 13–15 November 2007, Roma

  • Gosar A (2012) Analysis of the capabilities of low frequency ground penetrating radar for cavities detection in rough terrain conditions: the case of Divača cave, Slovenia. Acta Carsologica 41(1):77–88

    Google Scholar 

  • Handy MR, Schmid SM, Bosquet R, Kissling E, Bernoulli D (2010) Reconciling plate-tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth Sci Rev 102:121–158

    Article  Google Scholar 

  • Horaček I, Mihevc A, Zupan Hajna N, Pruner P, Bosak P (2007) Fossil vertebrates and paleomagnetism update of one of the earlier stages of cave evolution in the classical karst, Slovenia: Pliocene of Črnotiče II site and Račiška pečina cave. Acta Carsologica 36(3):453–468

    Google Scholar 

  • Jol HM (2009) Ground penetrating radar: theory and applications. Elsevier, Amsterdam

  • Jurkovšek B (2008) Geološka karta severnega dela Tržaško-komenske planote 1:25.000 (Geological map of the northern part of the Trieste-Komen plateau 1:25.000). Geological Survey of Slovenia, Ljubljana

  • Jurkovšek B, Toman M, Ogorelec B, Šribar L, Drobne K, Poljak M, Šribar L (1996) Formacijska geološka karta južnega dela Tržaško–Komenske planote: Kredne in paleogenske karbonatne kamnine. 1: 50.000 (Geological map of the southern part of the Trieste–Komen Plateau: Cretaceous and Paleogene carbonate rocks. 1:50.000). Geological Survey of Slovenia, Ljubljana

  • Korbar T (2009) Orogenic evolution of the external Dinarides in the NE Adriatic region: a model constrained by tectonostratigraphy of upper Cretaceous to Paleogene carbonates. Earth Sci Rev 96(4):296–312

    Article  Google Scholar 

  • Košir A (2003) Litostratigrafska revizija zgornje krede in paleogena v jugozahodni Sloveniji (Litostratigraphic revision of the upper cretaceous and the paleogene in Southwestern Slovenia). 17th Meeting of Slovenian Geologists: abstracts of papers 92–98. Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana

  • Mala (2009) ProEx—professional explorer control unit. Operating manual, Mala

  • McClymont AF, Villamor P, Green AG (2009) Fault displacement accumulation and slip rate variability within the Taupo Rift (New Zealand) based on trench and 3-D ground-penetrating radar data. Tectonics 28(TC4005):1–25

    Google Scholar 

  • McMechan GA, Loucks RG, Zeng X, Mescher P (1998) Ground penetrating radar imaging of a collapsed paleocave system in the Ellenburger dolomite, central Texas. J Appl Geophys 39:1–10

    Article  Google Scholar 

  • Mihevc A (2000) Fosilne cevke iz brezstrope jame—verjetno najstarejši ostanki jamskega cevkarja Marifungia (Annelida: Polychaeta) (The fossilized tubes from the roofless cave—probably the oldest known remains of the cave worm Marifugia (Annelida: Polychaeta)). Acta Carsologica 29(2):261–270

    Google Scholar 

  • Mihevc A (2007) The age of karst relief in West Slovenia. Acta Carsologica 36(1):35–44

    Google Scholar 

  • Mihevc A, Bosák P, Pruner P, Vokal B (2002) Fosilni ostanki jamske živali Marifugia cavatica v brezstropi jami v kamnolomu Črnotiče v zahodni Slovenii (Fossil remains of the cave animal Marifugia cavatica in the unroofed cave in the Črnotiče quarry, W Slovenia). Geologija 45(2):471–474

    Article  Google Scholar 

  • Milsom J (2003) Ground penetrating radar. Field geophysics, 3rd edn. Wiley, West Sussex, pp 167–178

    Google Scholar 

  • Neal A (2004) Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Sci Rev 66:261–330

    Article  Google Scholar 

  • Orlando L (2003) Semiquantitative evaluation of massive rock quality using ground penetrating radar. J Appl Geophys 52:1–9

    Article  Google Scholar 

  • Otoničar B (2007) Upper Cretaceous to Paleogene forebulge unconformity associated with foreland basin evolution (Kras, Matarsko podolje and Istria; SW Slovenia and NW Croatia). Acta Carsologica 36(1):101–120

    Google Scholar 

  • Pauselli C, Federico C, Frigeri A, Orosei R, Barchi MR, Basile G (2010) Ground penetrating radar investigations to study active faults in the Norcia Basin (central Italy). J Appl Geophys 72:39–45

    Article  Google Scholar 

  • Pavlič MU, Praznik B (2011) Detecting karstic zones during highway construction using ground-penetrating radar. Acta Geotechnica Slovenica 8:17–27

    Google Scholar 

  • Placer L (2002) Predhodna objava rezultatov strukturnega profiliranja Kraškega roba in Istre, AC Kozina–Srmin, Sečovlje (Preliminary results of structural profiling of the Kras edge and Istria, Kozina–Srmin Motorway, Sečovlje). Geologija 45(1):277–280

    Article  Google Scholar 

  • Placer L (2005) Strukturne posebnosti severne Istre (Structural curiosity of the northern Istria). Geologija 47(2):245–251

    Article  Google Scholar 

  • Placer L (2007) Kraški rob. Geološki prerez vzdolž AC Kozina-Koper (Kraški rob (landscape term). Geologic section along the motorway Kozina-Koper (Capodistria)). Geologija 50(1):29–44

    Article  Google Scholar 

  • Placer L, Košir A, Popit T, Šmuc A, Juvan G (2004) The Buzet thrust fault in Istria and overturned megabeds in the Eocene flysch of the Dragonja Valley (Slovenia). Geologija 47(2):193–198

    Article  Google Scholar 

  • Placer L, Vrabec M, Celarc B (2010) The bases for understanding of the NW Dinarides and Istria Peninsula tectonics. Geologija 53(1):55–86

    Article  Google Scholar 

  • Pueyo-Anchuela O, Casas-Sains AM, Soriano MA, Pocovi-Juan A (2009) Mapping subsurface karst features with GPR: results and limitations. Environ Geol 58:391–399

    Article  Google Scholar 

  • Reynolds JM (1997) An introduction to applied and engineering geophysics. Wiley, West Sussex, p 796

    Google Scholar 

  • Rižnar I, Koler B, Bavec M (2007) Recentna aktivnost regionalnih tektonskih struktur v zahodni Sloveniji (Recent activity of the regional geologic structures in Western Slovenia). Geologija 50(1):111–120

    Article  Google Scholar 

  • Sigurdsson T, Overgaard T (1998) Application of GPR for 3-D visualization of geological and structural variation in a limestone formation. J Appl Geophys 40:29–36

    Article  Google Scholar 

  • Vrabec M, Fodor L (2006) Late Cenozoic tectonics of Slovenia: structural styles at the Northeastern corner of the Adriatic microplate. In: Pinter N, Grenerczy G, Weber J, Stein S, Medak D (eds) The Adria microplate: GPS geodesy, tectonics and hazards, NATO science Series, IV, Earth and environmental sciences 61. Springer, Dordrecht, pp 151–168

    Google Scholar 

  • Weber J, Vrabec M, Pavlovčič-Prešeren P, Dixon T, Jiang Y, Stopar B (2010) GPS-derived motion of the Adriatic microplate from Istria Peninsula and Po Plain sites, and geodynamic implications. Tectonophysics 483:214–222

    Article  Google Scholar 

  • Zajc M, Pogačnik Ž, Gosar A (2014) Ground penetrating radar and structural geological mapping investigation of karst and tectonic features in flyschoid rocks as geological hazard for exploitation. Int J Rock Mech Min Sci 67:78–87

    Google Scholar 

Download references

Acknowledgments

This study was conducted with the support of the research programme P1-0011 and the Ph.D. Grant 1000-10-310074 financed by the Slovenian Research Agency. This work also benefited from networking activities carried out within the EU funded COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjana Zajc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zajc, M., Celarc, B. & Gosar, A. Structural–geological and karst feature investigations of the limestone–flysch thrust-fault contact using low-frequency ground penetrating radar (Adria–Dinarides thrust zone, SW Slovenia). Environ Earth Sci 73, 8237–8249 (2015). https://doi.org/10.1007/s12665-014-3987-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3987-x

Keywords

Navigation