Environmental Earth Sciences

, Volume 73, Issue 12, pp 7983–7994 | Cite as

Groundwater salinization in arid coastal wetlands: a study case from Playa Fracasso, Patagonia, Argentina

  • María del Pilar AlvarezEmail author
  • Cristina Dapeña
  • Pablo J. Bouza
  • Ileana Ríos
  • Mario A. Hernández
Original Article


The origin of the high salinity in the groundwater of a coastal wetland in an arid climate was studied in the Playa Fracasso marsh, located on the northwest coast of the extra-Andean Patagonia. Research was carried out by means of the design of a network of soil pits and short piezometers in the marsh and the surrounding landforms. Continuous fluctuations of the water table, in situ physical and chemical properties, major ions (Ca2+, Mg2+, Na+, K+, Cl, SO4 2−, HCO3 ) and stable isotopes (18O and 2H) in groundwater, as well as soil salinity, were measured. The combined analysis of the hydrodynamics, the ion ratios rCa2+/rCl and rMg2+/rCa2+ vs. rCl and the isotopic composition made it possible to recognize an area within the high marsh in which the origin of groundwater is mainly marine and another in which the contributions are of mixed origin. By means of the analysis of rCl vs. δ18O, a salinization process with no change in isotopic composition was identified. Its interpretation, together with those of the soil salinity profiles and the records of the fluctuations in electrical conductivity associated with extraordinary tides, was used to define a conceptual model of salinization which could be useful to understand other coastal wetlands under similar arid climatic conditions. It consists in a cyclical mechanism of evapotranspiration, precipitation, dissolution and transport of salts during tides.


Geohydrology Hydrochemistry Salt marsh Patagonia Arid climate 



The authors would like to thank Agr. Eng. Claudia Saín for her assistance in the laboratory and Tech. Julio César Rua (Bocha) for his help in the field. This work has been funded by the ANPCyT (PICT2008 No 2127) and the CIUNPAT-UNPSJB-PROPEVA (PI No 842).


  1. Adam P (1990) Salt marsh ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. Alvarez MP, Weiler N, Hernández MA (2010) Linking geomorphology and hydrodynamics: a case study from Peninsula Valdés, Patagonia. Argent Hydrogeol J 18:473–486CrossRefGoogle Scholar
  3. Alvarez MP, Dapeña C, BouzaP, Hernández MA (2012) Estudio químico e isotópico preliminar del origen del agua subterránea en el humedal costero Playa Fracasso. Península Valdés, Chubut. II Reunión Argentina de Geoquímica de la Superficie. IADO. CONICET-UNS. Bahía Blanca. Abstract book. GI-1Google Scholar
  4. APHA, AWWA, WPCF (1997) Standard methods for the examination of water and waste water, 19th edn. American Public Health Association, Washington, p 1134Google Scholar
  5. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution. CRC Press. Taylor & Francis Group. 241–247Google Scholar
  6. Bala LO, Hernández MA, Musmeci LR (2008) Humedales costeros y aves playeras migratorias. CENPAT, Puerto Madryn, p 120. ISBN:978-987-05-5598-8Google Scholar
  7. Bortolus A, Schwindt E, Bouza PJ, Idaszkin YL (2009) A characterization of Patagonian Salt Marshes. Wetlands 29(2):772–780CrossRefGoogle Scholar
  8. Bouza PJ, Sain C, Bortolus A, Ríos I, Idaszkin Y, Cortés E (2008) Geomorfología y características morfológicas y fisicoquímicas de suelos hidromórficos de marismas patagónicas. Actas XXI Congreso Argentino de la Ciencia del Suelo, San Luis. CD-ROM editionGoogle Scholar
  9. Brinson MM (1989) Fringe wetlands in Albemarle and Pamlico sounds: landscape position, fringe swamp structure, and response to rising sea level. Project No. 88-14, Albemarle-Pamlico Estuarine Study, RaleighGoogle Scholar
  10. Burgos JJ, Vidal AL (1951) Los climas de la República Argentina, según la nueva clasificación de Thornthwaite. Meteoros 1:3–32Google Scholar
  11. Bye JAT, Narayan KA (2009) Groundwater response to the tide in wetlands: observations from the Gillman Marshes, South Australia. Estuar Coast Shelf Sci 84:219–226CrossRefGoogle Scholar
  12. Carol E, Kruse E, Mas-Pla J (2009) Hydrochemical and isotopical evidence of ground water salinization processes on the coastal plain of Samborombón Bay. Argent J Hydrol 365:335–345CrossRefGoogle Scholar
  13. Carol E, Mas-Pla J, Kruse E (2013) Interaction between continental and estuarine waters in the wetlands of the northern coastal plain of Samborombón Bay. Appl Geochem 34:152–163CrossRefGoogle Scholar
  14. Castillo Pérez E, Morell Evangelista I (1988) La hidroquímica en los estudios de intrusión marina en los acuíferos españoles. TIAC’88, 19–73Google Scholar
  15. Codignotto JO (1987) Glosario Geomorfológico Marino. Asociación Geológica Argentina, Serie B: Didáctica y Complementaria No. 17, p 70Google Scholar
  16. Custodio E (1997) Studying, monitoring and controlling seawater intrusion in coastal aquifers. In: guidelines for study monitoring and control. FAO Water Reports. p 11Google Scholar
  17. Custodio E (2010) Las aguas subterráneas como elemento básico de la existencia de numerosos humedales. Ingeniería del Agua 17:119–135Google Scholar
  18. Dapeña C (2008) Isótopos ambientales livianos: su aplicación en hidrología e hidrogeología. PhD thesis. Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Tesis 4282. p 442Google Scholar
  19. Dapeña C, Panarello HO (1999) Development of the National Network for Isotopes in Precipitation of Argentina. II South American Symposium on Isotope Geology 503–508Google Scholar
  20. Dapeña C, Panarello HO (2008) Isótopos en precipitación en Argentina. Aplicaciones en Estudios Hidrológicos e Hidrogeológicos. IX Congreso Latinoamericano de Hidrología Subterránea. ALHSUD Volumen CD T-100. p 8. Quito, EcuadorGoogle Scholar
  21. de Montety V, Radakovitch O, Vallet-Coulomb C, Blavoux B, Hermitte D, Valles V (2008) Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: case of the Rhône delta (Southern France). Appl Geochem 23(2008):2337–2349CrossRefGoogle Scholar
  22. Durán JJ (2003) Presencia de aguas de diferente salinidad y origen en los humedales del litoral mediterráneo español. In: Tecnología de la intrusión de agua de mar en acuíferos costeros: países mediterráneos, 2:149–154. Serie: Hidrogeología y Aguas Subterráneas, 8, IGME. MadridGoogle Scholar
  23. Erskine AD (1991) The effect of tidal fluctuations on a coastal aquifer in the UK. Ground Water 29:556–562CrossRefGoogle Scholar
  24. Fass T, Cook PG, Stieglitz T, Herczeg AL (2007) Development of saline groundwater through transpiration of sea water. Ground Water 45(6):703–710CrossRefGoogle Scholar
  25. Ferris JG (1951) Cyclic fluctuations of water level as a basis for determining aquifer transmissibility: Int Geodesy Geophys Union, Assoc Sci Hydrol Gen. Assembly, Brussels, 2: 148–155; duplicated 1952 as US Geological Survey Ground Water Note 1Google Scholar
  26. Fitzpatrick RW, Merry RH, Cox JW (2000) What are saline soils? What happens when they are drained? J Aust Assoc Nat Resour Manag (AANRM). Special Issue (June 2000), 26–30Google Scholar
  27. Frumento O, Contrera O (2013) Laboratorio de climatología Centro Nacional Patagónico—CONICET, Puerto Madryn.
  28. Gat JR (1981) Groundwater. In: stable isotope hydrology: deuterium and oxygen-18 in the water cycle. Technical report series No 210, International Atomic Energy Agency, Vienna, Chapter 10:223–240Google Scholar
  29. Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534CrossRefGoogle Scholar
  30. Gonfiantini R, Araguas-Araguas L (1988) Los isótopos ambientales en el estudio de la intrusión marina. Tecnología de la intrusión en acuíferos costeros, vol 1, 135–190. Inst Geol y Minero de España, MadridGoogle Scholar
  31. Haller M, Monti A, Meinster C (2001) Hoja Geológica 4366-1 Península Valdés. Boletín Nro. 266. Buenos Aires: Servicio Geológico Minero ArgentinoGoogle Scholar
  32. Han DM, Kohfahl C, Song XF, Xiao GQ, Yang JL (2011) Geochemical and isotopic evidence for paleo-seawater intrusion into the south coast aquifer of Laizhou Bay. China Appl Geochem 26:863–883CrossRefGoogle Scholar
  33. Harbison J, Cox M (2002) Hydrological characteristics of groundwater in a subtropical coastal plain with large variations in salinity, Pimpana, Queensland. Aust Hydrol Sci J 47(4):651–665CrossRefGoogle Scholar
  34. Hidrografía Naval Argentina (2010–2012) Tablas de marea.
  35. IAEA/WMO (2002) Global network for isotopes in precipitation. The GNIP Database.
  36. Lee JY, Song SH (2007) Groundwater chemistry and ionic ratios in a western coastal aquifer of Buan, Korea: implication for seawater intrusion. Geosci J 11(3):259–270CrossRefGoogle Scholar
  37. Lis G, Wassenaar LI, Hendry MJ (2008) High-precision laser spectroscopy D/H and 18O/16O measurements of microliter natural water samples. Anal Chem 80:287–293CrossRefGoogle Scholar
  38. Manzano M, Borja F, Montes C (2002) Metodología de tipificación hidrológica de los humedales españoles con vistas a su valoración funcional y a su gestión. Aplicación a los humedales de Doñana. Boletín Geológico y Minero, 113(3):313–330Google Scholar
  39. Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. Wiley, New YorkGoogle Scholar
  40. Ridd PV, Stieglitz T (2002) Dry season salinity changes in arid estuaries fringed by mangroves and saltflats. Estuar Coast Shelf Sci 54(6):1039–1049CrossRefGoogle Scholar
  41. Ríos I (2010) Geoecología de plantas vasculares en suelos hidromórficos de una marisma patagónica: propiedades morfológicas, físicas, químicas y bióticas. Universidad Nacional de la Patagonia San Juan Bosco, Puerto Madryn, p 57Google Scholar
  42. Ríos I, Bouza PJ, Sain CL, Bortolus A, Cortés EG (2012) Caracterización y clasificación de los suelos de una marisma patagónica, NE del Chubut. XIX Congreso Latinoamericano de Suelos and XXIII Congreso Argentino de la Ciencia del Suelo. Mar del Plata, Argentina. Extended abstract. CD-ROM. ISBN 978-987-1829-11-8Google Scholar
  43. Schlumberger (2010) AquaChem 2010.1. A professional application for water quality analysis, plotting, replotting and modeling. Schlumberger Water ServicesGoogle Scholar
  44. Silvestri S, Marani M (2004) Salt-marsh vegetation and morphology: basic physiology, modelling and remote sensing. In: Fagherazzi S, Blum L, Marani M (eds) Ecogeomorphology of tidal marshes. American Geophysical Union, Coastal and Estuarine Monograph Series Observations, WashingtonGoogle Scholar
  45. Smith AJ, Hick WP (2001) Hydrogeology and aquifer tidal propagation in Cockburn sound, Western Australia. CSIRO Technical report 6/01Google Scholar
  46. Soil Survey Staff (1999) Soil taxonomy. A basic system of soil classification for making and interpreting soil surveys; second edition. Agricultural Handbook 436; Natural Resources Conservation Service, USDA, p 869, WashingtonGoogle Scholar
  47. Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and water balance. Centerton, p 312Google Scholar
  48. Vázquez Suñé E (2002) Programa Easy Quim 4. GHS-UPC, CIHS, SpainGoogle Scholar
  49. Vengosh A (2003) Salinization and saline environments. In: Sherwood Lollar B, Holland HD, Turekian KT (eds) Environ Geochem. Elsevier Science. 9:333–365Google Scholar
  50. Warner N, Lgourna Z, Bouchaou L, Boutaleb S, Tagma T, Hsaissoune M, Vengosh A (2013) Integration of geochemical and isotopic tracers for elucidating water sources and salinization of shallow aquifers in the sub-Saharan Drâa Basin, Morocco. Appl Geochem 34:140–151CrossRefGoogle Scholar
  51. Wilson AM, Morris JT (2012) The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry 108(1–3):27–38. doi: 10.1007/s10533-010-9570-y CrossRefGoogle Scholar
  52. Yurtsever Y (1994) Role of environmental isotopes in studies related to salinization processes and salt water intrusion dynamics. In: Proceedings of the 13th Salt-Water Intrusion Meeting, Cagliari. pp 177–185Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • María del Pilar Alvarez
    • 1
    Email author
  • Cristina Dapeña
    • 2
  • Pablo J. Bouza
    • 3
  • Ileana Ríos
    • 3
  • Mario A. Hernández
    • 1
  1. 1.Cátedra de HidrogeologíaUniversidad Nacional de La Plata (UNLP), CONICETLa PlataArgentina
  2. 2.Instituto de Geocronología y Geología Isotópica (INGEIS, CONICET-UBA)Buenos AiresArgentina
  3. 3.Centro Nacional Patagónico (CENPAT-CONICET)Puerto MadrynArgentina

Personalised recommendations