Skip to main content

Advertisement

Log in

Environmental geochemistry and sources of natural arsenic in the Kharaqan hot springs, Qazvin, Iran

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The Kharaqan hot springs are located in the historic city of Abe-Garm, famous for its hot springs, in Qazvin province, in northwestern Iran. Thermal waters with temperatures ranging from 28.7 to 52 °C vary in chemical composition and TDS contents. Those waters generally are enriched in Na–Cl–HCO3 and suggest deep water circulation. Chemistry of all of the water samples are graphed in the Cl–SO4–HCO3 ternary diagram. There is a trend of mixing along a line of constituent proportions between recently recharged water and older water. The trend toward the chloride corner is mainly the result of contact in the subsurface with evaporite-bearing formations and/or mixing with brines. Relatively high concentrations of Na, Ca, K, Cl, and SO4 resulted from rock/water interactions. These hot spring waters show high concentrations of arsenic (0.14–0.95 mg L−1). The diffusion of As-bearing spring waters into shallow aquifers could contaminate the groundwater which is used for drinking purposes. Also discharges of this As-enriched water into streams and rivers could affect irrigated crops in downstream fields. In both cases, the health of local residents could be at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aghanabati A (2004) Geology of Iran. GSI Publication, Tehran

    Google Scholar 

  • Ahmad SA, Bandarnayake D, Khan AW, Hadi SA, Uddin G, Halim MA (1997) Arsenic in ground water and arsenicosis in Bangladesh. Int J Environ HealthRes 7:271–276

    Article  Google Scholar 

  • Ahmad SA, Sayed MHSU, Barua S, Khan MH, Faruquee MH, Jalil A, Hadi SA, Talukder HK (2001) Arsenic in drinking water and pregnancy outcomes. Environ Health Perspect 109:629–631

    Article  Google Scholar 

  • Back W (1966) Hydro chemical facies and groundwater flow patterns in northern part of Atlantic Coastal Plain. US Geological Survey Professional Paper 498–A:42

  • Bates MN, Smith AH, Hopenhayn-Rich C (1992) Arsenic ingestion and internal cancers: a review. Am J Epidemiol 135:462–476

    Google Scholar 

  • Berberian M (1971) Preliminary report on structural analysis of Ipak Active Fault, internal report. Geological Survey of Iran, Tehran

    Google Scholar 

  • Bolourchi MH, Hajian J, Ohanian T, Vahdati F (1979) Explanatory text of Kabudar Ahang Quadrangle map 1:250,000 (D5). Geological and Mineral Survey of Iran, Tehran

    Google Scholar 

  • Bowen HJM (1979) Environmental Geochemistry of the Elements. Academic Press, London

    Google Scholar 

  • Bundschuh J, Maity JP, Nath B, Baba A, Gunduz O, Kulp TR, Jean JS, Kar S, Yang HJ, Tseng YJ, Bhattacharya P, Chen CY (2013) Naturally occurring arsenic in terrestrial geothermal systems of western Anatolia, Turkey: potential role in contamination of freshwater resources. J Hazard Mater 262:951–959

    Article  Google Scholar 

  • Canadian Council of Ministers of the Environment (CCME) (1999) Canadian Water Quality Guidelines for the Protection of agricultural water uses/Arsenic. http://ceqg-rcqe.ccme.ca/

  • Caporale AG, Pigna M, Azam SMGG, Sommella A, Rao MA, Violante A (2013) Effect of competing ligands on the sorption/desorption of arsenite on/from Mg–Fe layered double hydroxides (Mg–Fe-LDH). Chem Eng J 225:704–709

    Article  Google Scholar 

  • Carmen Blanco M, Paoloni J, Morrás H, Fiorentino C, Sequeira M, Amiotti N, Bravo O, Diaz S, Espósito M (2012) Partition of arsenic in soils sediments and the origin of naturally elevated concentrations in groundwater of the southern pampa region (Argentina). Environ Earth Sci 66:2075–2084

    Article  Google Scholar 

  • Charlet L, Polya DA (2006) Arsenic hazard in shallow reducing groundwaters in southern Asia. Elements 2:91–96

    Article  Google Scholar 

  • Chen CJ, Chen CW, Wu MM, Kuo TL (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66:888–892

    Article  Google Scholar 

  • Chen CJ, Chiou HY, Chiang MH, Lin LJ, Tai TY (1996) Dose response relationship between ischemic heart disease mortality and longterm arsenic exposure. Arterioscler Thromb Vasc Biol 16:504–510

    Article  Google Scholar 

  • Chiou HY, Hsueh YM, Liaw KF et al (1995) Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up-study in Taiwan. Cancer Res 55:1296–1300

    Google Scholar 

  • Choong TSY, Chuah TG, Robiah Y, Gregory Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166

    Article  Google Scholar 

  • Chudaev O, Chudaeva V, Sugimori K, Kuno A, Matsuo M (2006) Geochemistry of recent hydrothermal systems of Mendeleev Volcano, Kuril Islands, Russia. J Geochem Explor 88:95–100

    Article  Google Scholar 

  • Duker AA, Carranza EJM, Hale M (2005) Arsenic geochemistry and health. Environ Int 31:631–641

    Article  Google Scholar 

  • Eleni I, Aletrari M, Eftychia C (2006) Risk assessment of the dietary intake of lead, cadmium, mercury and nitrates in cyprus and the relevant uncertainty. In: proceedings of the AOAC Europe Section, International Workshop, November 6-7, Limassol

  • Erfurt-Cooper P, Cooper M (2009) Health and wellness tourism: spas and hot springs. Aspects of tourism, vol 40. Channel View Publications, Bristol

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Ghafouri MR (2003) Mineral water and mineral springs of Iran. University of Tehran, Tehran

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na–K–Ca–Mg geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Guha Mazumder DN, Haque R, Ghosh N et al (2000) Arsenic in drinking water and the prevalence of respiratory effects in West Bengal, India. Int J Epidemiol 29:1047–1052

    Article  Google Scholar 

  • Hindmarsh JT, McCurdy RF (1986) Clinical and environmental aspects of arsenic toxicity. CRC Crit Rev Clin Lab Sci 23:315–347

    Article  Google Scholar 

  • Karimi H, Moore F (2008) The source and heating mechanism for the Ahram, Mirahmad and Garu thermal springs, Zagros mountains, Iran. Geothermics 37:84–100

    Article  Google Scholar 

  • Krauskopf KB, logue K (2002) Environmental geochemistry, environmental science, encyclopedia of physical science and technology, 3rd edn. Academy Press, London, pp 519–545

    Google Scholar 

  • Leybourne MI, Goodfellow WD, Boyle DR (1998) Hydro geochemical, isotopic and rare earth element evidence for contrasting water–rock interactions at two undisturbed Zn–Pb massive sulphide deposits, Bathurst Mining Camp, NB, Canada. J Geochem Exp 64:237–261

    Article  Google Scholar 

  • Marini L (2000) Geochemical techniques for the exploration and exploitation of geothermal energy, Università degli Studi di Genova. Dipartimento per lo Studio del Territorio e delle sue Risorse, Genova, Italia

    Google Scholar 

  • McArthur JM, Banerjee DM, Hudson-Edwards KA, Mishra R, Purohit R, Ravenscroft P, Cronin A, Howarth RJ, Chatterjee A, Talukder T, Lowry D, Houghton S, Chadha DK (2004) Natural organic matter in sedimentary basins and its relation to arsenic in anoxic ground water: the example of West Bengaland its worldwide implications. Appl Geochem 19:1255–1293

    Article  Google Scholar 

  • Milton AH, Hasan Z, Rahman A (2001) Chronic arsenic poisoning and respiratory effects in Bangladesh. J Occup Health 43:136–140

    Article  Google Scholar 

  • Minissale A (1991) Thermal springs in Italy: their relation to recent tectonics. Appl Geochem 6:201–212

    Article  Google Scholar 

  • Modabberi S, Jahromi Yekta SS (2014) Environmental geochemistry and sources of potentially toxic elements in thermal springs in the Sabalan volcanic field, NW Iran. Environ Earth Sci 71:2821–2835

    Article  Google Scholar 

  • Mroczek EK (2005) Contributions of arsenic and chloride from the Kawerau geothermal field to the Tarawera River, New Zealand. Geothermics 34:218–233

    Article  Google Scholar 

  • Mukherjee SC, Rahman MM, Chowdhury UK et al (2003) Neuropathy in arsenic toxicity from groundwater arsenic contamination in West Bengal-India. J Environ Sci Health Part A Environ Sci Eng 38:165–183

    Article  Google Scholar 

  • Mukherjee A, Bhattacharya P, Savage K, Foster A, Bundschuh J (2008) Distribution of geogenic arsenic in hydrologic systems: controls and challenges. J Contam Hydrol 99:1–7

    Article  Google Scholar 

  • Mukherjee A, Fryar AE, Scanlon BR, Bhattacharya P, Bhattacharya A (2011) Elevated arsenic in deeper groundwater of western Bengal basin, India: extents and controls from regional to local-scale. Appl Geochem 26:600–613

    Article  Google Scholar 

  • Mutlu H (1998) Chemical geothermometry and fluid–mineral equilibria for the Ömer-Gecek thermal waters, Afyon area, Turkey. J Volcanol Geotherm Res 80:303–321

    Article  Google Scholar 

  • Navi P, Taheri M, Yazdi M (2012) Introduction of Kharaqan Hot springs for Health Tourism. In: Proceedings of 1st Symposium on Irans Geoheritage, January 23, The Geological Survey and Mineral Exploration of Iran, 13 p

  • Nicolli HB, Suriano JM, Gomez Peral MA, Ferpozzi LH, Baleani OA (1989) Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Cordoba, Argentina. Environ Geol Water Sci 14:3–16

    Article  Google Scholar 

  • Nicolli HB, Bundschuh J, Blanco MC, Tujchneider OC, Panarello HO, Dapeña C, Rusansky JE (2012) Arsenic and associated trace-elements in groundwater from the Chaco-Pampean plain, Argentina: results from 100 years of research. Sci Total Environ 429:36–56

    Article  Google Scholar 

  • Pearcy CA, Chevis DA, Haug TJ, Jeffries HA, Yang N, Tang J, Grimm DA, Johannesson KH (2011) Evidence of microbially mediated arsenic mobilization from sediments of the Aquia aquifer, Maryland, USA. Appl Geochem 26:575–586

    Article  Google Scholar 

  • Pehlivan R (2002) The effects on human health and hydro geochemical characteristics of the Kirkgeçit and Ozancik hot springs, Çanakkale, Turkey. Environ Geochem Health 25:205–217

    Article  Google Scholar 

  • Pentecost A, Jones B, Renaut RW (2003) What is a hot spring? Can J Earth Sci 40:1443–1446

    Article  Google Scholar 

  • Piper AM (1944) A graphical interpretation of water analysis. Trans Am Geophys Union 25:914–928

    Article  Google Scholar 

  • Pitkanen P, Kaija J, Blomqvist R, Smellie JAT, Frape SK, Laaksoharju M, Negral PH, Casanova J, Karhu J (2002) Hydro geochemical interpretation of groundwater at Palmottu. Paper EUR 19118 EN, European Commission, Brussels, pp 155–167

  • Polya DA, Gault AG, Diebe N, Feldman P, Rosenboom JW, Gilligan E, Fredericks D, Milton AH, Sampson M, Rowland HAL, Lythgoe PR, Jones JC, Middleton C, Cooke DA (2005) Arsenic in shallow Cambodian groundwaters. Miner Mag 69:807–823

    Article  Google Scholar 

  • Rahman MM, Tondel M, Ahmad SA, Axelson O (1998) Diabetes mellitus associated with arsenic exposure in Bangladesh. Am J Epidemiol 148:198–203

    Article  Google Scholar 

  • Rahman MM, Chowdhury UK, Mukherjee SC et al (2001) Chronic arsenic toxicity in Bangladesh and West Bengal, India—a review and commentary. Clin Toxicol 39:683–700

    Article  Google Scholar 

  • Rahman M, Naidu R, Bhattacharya P (2009) Arsenic contamination in groundwater in the Southeast Asia region. Environ Geochem Health 31:9–21

    Article  Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: a global synthesis. Wiley, UK

    Book  Google Scholar 

  • Raychowdhury N, Mukherjee A, Bhattacharya P, Johannesson K, Bundschuh J, Bejarano Sifuentes G, Nordberg E, Martin RA, Rosario Storniolo AD (2013) Provenance and fate of arsenic and other solutes in the Chaco-Pampean Plain of the Andean foreland, Argentina: from perspectives of hydrogeochemical modeling and regional tectonic setting. J Hydrol. doi:10.1016/j.jhydrol.2013.07.003

    Google Scholar 

  • Robinson B, Duwig C, Bolan N, Kannathasan M, Saravanan A (2003) Uptake of arsenic by New Zealand watercress (Lepidium sativum). Sci Total Environ 301:67–73

    Article  Google Scholar 

  • Scanlon BR, Nicot JP, Reedy RC, Kurtzman D, Mukherjee A, Nordstrom DK (2009) Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains aquifer, Texas, USA. Appl Geochem 24:2061–2071

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Smith AH, Goycolea M, Haque R et al (1998) Marked increase in bladder and lung cancer mortality in a region of northern Chile due to arsenic in drinking water. Am J Epidemiol 147:660–669

    Article  Google Scholar 

  • Taheri M, Yazdi M, Navi P (2012a) Health hazards and arsenic pollutants in Kharaqan Hot springs, Qazvin. In: proceedings of 4th Symposium of Iranian Society of Economic Geology, August 30–31, Birjand university

  • Taheri M, Yazdi M, Navi P, Sadati N (2012b) Application of remote sensing for alteration mapping in Avaj area. In: proceedings of 16th Symposium of geological society of Iran, September 4–6, Shiraz University, p 8

  • Taylor SR (1964) Abundance of elements in the continental crust. Geochim Cosmochim Acta 28:1273–1286

    Article  Google Scholar 

  • Thakur JK, Thakur RK, Ramanathan A, Kumar M, Singh SK (2011) Arsenic contamination of groundwater in Nepal—an overview. Water 3:1–20

    Article  Google Scholar 

  • Tondel M, Rahman M, Magnuson A, Chowdhury IA, Faruquee MH, Ahmad SA (1999) The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect 107:727–729

    Article  Google Scholar 

  • USNRC (1999) Arsenic in drinking water. DC, United States National Research Council, National Academy Press, Washington

    Google Scholar 

  • Vaughan DJ (2006) Arsenic. Elem (Int Mag Miner Geochem Petrol) 2(2):71–75

    Google Scholar 

  • Wang CH, Hsiao CK, Chen CL et al (2007) A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular diseases. Toxicol Appl Pharmacol 222:315–326

    Article  Google Scholar 

  • Webster JG (1999) The source of arsenic (and other elements) in the Marbel-Matingao river catchment, Mindanao, Philippines. Geothermics 28:95–111

    Article  Google Scholar 

  • Wedepohl KH (eds) (1969–1974) Handbook of Geochemistry. Springer, Berlin

  • Welch AH, Westjohn DB, Helsel DR, Wanty RB (2000) Arsenic in ground water of the United States: occurrence and geochemistry. Ground Water 38(4):589–604

    Article  Google Scholar 

  • Woolson EA (1983) Emissions, cycling and effects of arsenic in soil ecosystems. In: Fowler BA (eds) Biological and environmental effects of arsenic. Elsevier, New York, pp 51–139

  • World Health Organization (2003) Total dissolved solids in drinking water. Background document for preparation of WHO guidelines for drinking-water quality. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2006) Guidelines for safe recreational water environments. Swimming pools and similar environments. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2011) Arsenic in drinking-water. World Health Organization, Geneva

    Google Scholar 

  • Yazdi M, Taheri M, Navi P, Sadati N (2013) Landsat ETM+ imaging for mineral potential mapping: application to Avaj area, Qazvin, Iran. Int J Remote Sens 34(16):5778–5795

    Article  Google Scholar 

  • Yoshizuka K, Nishihama S, Sato H (2010) Analytical survey of arsenic in geothermal waters from sites in Kyushu, Japan, and a method for removing arsenic using magnetite. Environ Geochem Health 32:297–302

    Article  Google Scholar 

  • Yousefi H, Noorollahi Y, Ehara S, Itoi R, Yousefi A, Fujimitsu Y, Nishijima J, Sasaki K (2010) Developing the geothermal resources map of Iran. Geothermics 39:140–151

    Article  Google Scholar 

  • Zhang G, Liu CQ, Liu H, Jin Z, Han G, Li L (2008) Geochemistry of the Rehai and Ruidian geothermal waters, Yunnan Province, China. Geothermics 37:73–83

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to the Geological Survey of Iran and Shahid Beheshti University for providing the funds for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yazdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazdi, M., Taheri, M. & Navi, P. Environmental geochemistry and sources of natural arsenic in the Kharaqan hot springs, Qazvin, Iran. Environ Earth Sci 73, 5395–5404 (2015). https://doi.org/10.1007/s12665-014-3794-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3794-4

Keywords

Navigation