Advertisement

Environmental Earth Sciences

, Volume 72, Issue 10, pp 3881–3899 | Cite as

TESSIN VISLab—laboratory for scientific visualization

  • Lars BilkeEmail author
  • Thomas Fischer
  • Carolin Helbig
  • Charlotte Krawczyk
  • Thomas Nagel
  • Dmitri Naumov
  • Sebastian Paulick
  • Karsten Rink
  • Agnes Sachse
  • Sophie Schelenz
  • Marc Walther
  • Norihiro Watanabe
  • Björn Zehner
  • Jennifer Ziesch
  • Olaf Kolditz
Thematic Issue

Abstract

Scientific visualization is an integral part of the modeling workflow, enabling researchers to understand complex or large data sets and simulation results. A high-resolution stereoscopic virtual reality (VR) environment further enhances the possibilities of visualization. Such an environment also allows collaboration in work groups including people of different backgrounds and to present results of research projects to stakeholders or the public. The requirements for the computing equipment driving the VR environment demand specialized software applications which can be run in a parallel fashion on a set of interconnected machines. Another challenge is to devise a useful data workflow from source data sets onto the display system. Therefore, we develop software applications like the OpenGeoSys Data Explorer, custom data conversion tools for established visualization packages such as ParaView and Visualization Toolkit as well as presentation and interaction techniques for 3D applications like Unity. We demonstrate our workflow by presenting visualization results for case studies from a broad range of applications. An outlook on how visualization techniques can be deeply integrated into the simulation process is given and future technical improvements such as a simplified hardware setup are outlined.

Keywords

Virtual reality Visualization Computer graphics Data exploration Hydrological processes Geotechnics Seismic data OpenGeoSys VISLAB 

Notes

Acknowledgments

The intention of this work is a compilation of case studies which have been carried out in the visualization laboratory TESSIN VISLab over the last years comprising different disciplines in environmental sciences. The authors would like to thank Thomas Kalbacher, Karsten Rinke, Benny Selle, Feng Sun and Nico Trauth for providing some of the data sets presented in the case studies. We thank Leslie Jakobs for the improvement of the manuscript concerning clarity and language. We acknowledge the participation of the following departments of the Helmholtz Centre for Environmental Research—UFZ in supporting several interdisciplinary case study visualizations: Catchment Hydrology (CATHYD), Computational Hydrosystems (CHS), Hydrogeology (HDG), Groundwater Remediation (GWS), Monitoring and Exploration Technologies (MET), Ecosystem Analysis (OESA) and Lake Research (SEEFO). We are very grateful to our external cooperation partners for data provision and fruitful discussion to improve visualization as a practical and useful tool for applied research, Federal Institute for Geosciences and Natural Resources (BGR), German Research Centre for Geosciences (GFZ), Leipzig University of Applied Sciences (HTWK), Leibniz Institute for Applied Geosciences (LIAG), University of Leipzig, Technische Universität Dresden, Technische Universität Freiberg. This work was sponsored in part by the Australian Commonwealth Government through the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC). PROTECT is funded through the “Geotechnologien” Programme (Grant 03G0797). We acknowledge the support by the NUMTHECHSTORE project in cooperation with the Institute of Chemical Technology, University Leipzig, and the EWI2 project in cooperation with the Institute of Technical Thermodynamics, German Aerospace Center (DLR). Further acknowledgements to particular project funding are referred to in the individual papers cited for the case studies presented in this article.

References

  1. Alkan M, Keeba A, Yamankaradeniz N (2013) Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method. Energy 60:426–434. doi: 10.1016/j.energy.2013.08.017 CrossRefGoogle Scholar
  2. Autodesk: VRED - 3D Visualization Software. http://www.autodesk.com/products/vred/overview. Accessed: 15-Jul-2014
  3. Barco ClickShare wireless presentation system. http://www.barco.com/clickshare. Accessed: 08-Aug-2014
  4. Beinhorn M, Dietrich P, Kolditz O (2005) 3-D numerical evaluation of density effects on tracer tests. J Contam Hydrol 81(1–4):89–105CrossRefGoogle Scholar
  5. Bilke L (2009) Prozedurale Erzeugung von Modellen für die interaktive Visualisierung von Stadtgebieten der Gründerzeit. Master’s thesis, Hochschule für Technik, Wirtschaft und Kultur Leipzig (FH), Fachbereich Informatik, Mathematik und Naturwissenschaften. https://www.intranet.ufz.de/export/data/1/61741_Master_Lars-Bilke.pdf
  6. Bilke L (2014) Simple Seismic Reader. doi: 10.5281/zenodo.10509. https://github.com/ufz-vislab/SimpleSeismicReader
  7. Bilke L (2013–2014)VtkFbxConverter. doi: 10.5281/zenodo.10159. https://github.com/ufz-vislab/VtkFbxConverter
  8. Bilke L (2012–2014) VtkOsgConverter. doi: 10.5281/zenodo.10161. https://github.com/ufz-vislab/VtkOsgConverter
  9. Blöcher MG, Zimmermann G, Moeck I et al (2010) 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir. Geofluids 10(3):406–421. doi: 10.1111/j.1468-8123.2010.00284.x CrossRefGoogle Scholar
  10. Bryson S (1996) Virtual reality in scientific visualization. Commun ACM 39(5):62–71. doi: 10.1145/229459.229467 CrossRefGoogle Scholar
  11. Burdea GC, Coiffet P (2003) Virtual reality technology, 2nd edn. Wiley-IEEE PressGoogle Scholar
  12. Childs H, Geveci B, Schroeder W et al (2013) Research challenges for visualization software. Computer 46(5):34–42. doi: 10.1109/MC.2013.179 CrossRefGoogle Scholar
  13. Cook P (2014) Geologically storing carbon: learning from the Otway Project experience. CSIRO Publishing, Melbourne. ISBN 978-1-118-98618-9Google Scholar
  14. Ebert DS, Musgrave FK, Peachey D et al (1998) Texturing and modelling—a procedural approach, 2nd edn. Academic Press, San Diego, USAGoogle Scholar
  15. Elbe Dom—Fraunhofer IFF. http://www.iff.fraunhofer.de/en/laboratories/elbe-dom.html. Accessed 22 Aug 2014
  16. EnvirVis-EuroVis 2013. http://www.eurovis2013.de/content/envirvis.. Accessed 22-Aug-2014
  17. Foursa M (2004) Real-time infrared tracking system for virtual environments. In: Proceedings of the 2004 ACM SIGGRAPH international conference on virtual reality continuum and its applications in industry, VRCAI ’04, ACM, pp 427–430 doi: 10.1145/1044588.1044681
  18. GOCAD by Paradigm. http://www.pdgm.com/products/godcad.. Accessed 19-Sep-2014
  19. Goldstone W (2011) Unity 3.x Game development essentials, 2nd edn. Packt Publishing. http://unitybook.net
  20. Gräbe A, Rödiger T, Rink K et al (2012) Development of a regional groundwater flow model along the western Dead Sea escarpment. In: Models-repositories of knowledge, pp 345–350. IAHS Redbook #355 (2012). ISBN:978-190716134-6Google Scholar
  21. Gräbe A, Rödinger T, Rink K et al (2013) Numerical analysis of the groundwater regime in the western Dead Sea Escarpment, Israel + West Bank. Environ Earth Sci 69(2):571–585. doi: 10.1007/s12665-012-1795-8 CrossRefGoogle Scholar
  22. Grathwohl P, Rügner H, Wöhling T et al (2013) Catchments as reactors: a comprehensive approach for water fluxes and solute turn-over. Environ Earth Sci 69(2):317–333. doi: 10.1007/s12665-013-2281-7 CrossRefGoogle Scholar
  23. Haehnlein S, Grathwohl P, Blum P, Bayer P (2011) Oberflächennahe Geothermie aktuelle rechtliche Situation in Deutschland. Grundwasser 16:69–75. doi: 10.1007/s00767-011-0162-0 CrossRefGoogle Scholar
  24. Haehnlein S, Bayer P, Ferguson G et al (2013) Sustainability and policy for the thermal use of shallow geothermal energy. Energy Policy 59:914–925. doi: 10.1016/j.enpol.2013.04.040 CrossRefGoogle Scholar
  25. Helbig C, Bauer HS, Rink K et al (2014) Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches.Environ Earth Sci. doi: 10.1007/s12665-014-3136-6 Google Scholar
  26. Henderson A, Ahrens J, Law C (2004) The paraView guide, 1th edn. Kitware, IncGoogle Scholar
  27. i’m in VR: MiddleVR. http://www.imin-vr.com/middlevr/. Accessed 15-Jul-2014
  28. Johnson A, Leigh J (2001) Tele-Immersive collaboration in the CAVE Research Network. In: Churchill EF, Snowdon DN, Munro AJ (eds) Collaborative virtual environments, computer supported cooperative work. Springer, London, pp 225–243. doi: 10.1007/978-1-4471-0685-2
  29. Jorke H, Fritz M (2006) Stereo projection using interference filters. Proc SPIE 6055, 60,550G–60,550G–8. doi: 10.1117/12.650348
  30. Kalbus E, Kalbacher T, Kolditz O et al (2011) Integrated Water Resources Management under different hydrological, climatic and socio-economic conditions. Environ Earth Sci 65(5):1363–1366. doi: 10.1007/s12665-011-1330-3 CrossRefGoogle Scholar
  31. KAUST visualization core lab. http://kvl.kaust.edu.sa/Pages/Showcase.aspx. Accessed 08 Aug 2014
  32. Kempka T, Class H, Görke UJ, Norden B, Kolditz O, Kühn M, Walter L, Wang W, Zehner B (2013) A dynamic flow simulation code intercomparison based on the revised static model of the Ketzin Pilot Site. Energy Proc 40:418–427. doi: 10.1016/j.egypro.2013.08.048 CrossRefGoogle Scholar
  33. Köhler P, Ditzer T, Huth A (2000) Concepts for the aggregation of tropical tree species into functional types and the application on Sabah’s dipterocarp lowland rain forests. J Tropical Ecol 16:591–602CrossRefGoogle Scholar
  34. Köhler P, Huth A (2004) Simulating growth dynamics in a South-East Asian rainforest threatened by recruitment shortage and tree harvesting. Clim Change 67:95–117CrossRefGoogle Scholar
  35. Kolditz O, Diersch HJ (1993) Quasi-steady-state strategy for numerical simulation of geothermal circulation in hot dry rock fractures. Int J Non-Linear Mech 28(4):467–481CrossRefGoogle Scholar
  36. Kolditz O, De Jonge J (2004) Non-isothermal two-phase flow in low-permeable porous media. Comput Mech 33(5):345–364CrossRefGoogle Scholar
  37. Kolditz O, Bauer S, Bilke L et al (2012) OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589–599. doi: 10.1007/s12665-012-1546-x CrossRefGoogle Scholar
  38. Kolditz O, Bauer S, Beyer C et al (2012) A systematic benchmarking approach for geologic \({\text {CO}}_{2}\) injection and storage. Environ Earth Sci 67(2):613–632. doi: 10.1007/s12665-012-1656-5 CrossRefGoogle Scholar
  39. Krause P, Kralisch S (2005) The hydrological modeling system J2000 knowledge core for JAMS. In: MODSIM 2005 international congress on modelling and simulation, pp 676–682 (2005)Google Scholar
  40. Krause P (ed) (2001) Das hydrologische modellsystem J2000, vol 29. Forschungszentrum Jülich, Umwelt/EnvironmentGoogle Scholar
  41. Krawczyk C, Tanner D, Henk A et al (2014) Seismic and sub-seismic deformation prediction in the context of geological carbon trapping and storage. Springer, BerlinGoogle Scholar
  42. Lipton L (1990) Large-screen electro-stereoscopic displays. Proc SPIE 1255:108–113. doi: 10.1117/12.19874 CrossRefGoogle Scholar
  43. McDermott C, Randriamanjatosoa A, Tenzer H et al (2006) Simulation of heat extraction from crystalline rocks: the influence of coupled processes on differential reservoir cooling. Geothermics 35(3):321–344CrossRefGoogle Scholar
  44. Mechdyne Corporation (2014) Conduit—real-time digital prototyping. http://www.mechdyne.com/conduit.aspx. Accessed 15 Jul 2014
  45. Mont Terri Project. http://www.mont-terri.ch. Accessed 22-Sep-2014
  46. Müller P, Wonka P, Haegler S et al (2006) Procedural modeling of buildings. ACM Trans Graph 25(3):614–623. doi: 10.1145/1141911.1141931 CrossRefGoogle Scholar
  47. Nagel T, Shao H, Singh A et al (2013) Non-equilibrium thermochemical heat storage in porous media: Part 1 - Conceptual model. Energy 60:254–270. doi: 10.1016/j.energy.2013.06.025 CrossRefGoogle Scholar
  48. Naumov D (2014) Settle dynamics–a sedimentation process simulator. http://www.naumov.de/settle3D. Accessed 01-Aug-2014
  49. Naumov D, Bilke L, Kolditz O (2014) Rendering technique of multi-layered domain boundaries and its application to fluid flow in porous media visualizations. Environ Earth Sci. doi: 10.1007/s12665-014-3445-9 Google Scholar
  50. Oculus R (2014) Virtual reality headset for 3D gaming. http://www.oculusvr.com. Accessed 15 Jul 2014
  51. OpendTect-Free Open-source Seismic Intepretation Software System. http://opendtect.org. Accessed 15-Jul-2014
  52. OpenFOAM. http://www.openfoam.org. Accessed 16-Jul-2014
  53. OpenGeoSys-Documentation. http://docs.opengeosys.org/. Accessed 22-Aug-2014
  54. Pan Y, Birdsey R, Fang J et al (2011) A large and persistent carbon sink in the world’s forests. Science 333:988–993CrossRefGoogle Scholar
  55. Qt Project. http://qt-project.org. Accessed 17-Sep-2014
  56. Rink K, Kalbacher T, Kolditz O (2012) Visual data exploration for hydrological analysis. Environ Earth Sci 65(5):1395–1403. doi: 10.1007/s12665-011-1230-6 CrossRefGoogle Scholar
  57. Rink K, Fischer T, Selle B et al (2013) A data exploration framework for validation and setup of hydrological models.Environ Earth Sci 69(2):469–477. doi: 10.1007/s12665-012-2030-3 CrossRefGoogle Scholar
  58. Rink K, Bilke L, Kolditz O (2014) Visualisation strategies for environmental modelling data. Environ Earth Sci. doi: 10.1007/s12665-013-2970-2 Google Scholar
  59. Rinke K, Kuehn B, Bocaniov S et al (2013) Reservoirs as sentinels of catchments: the Rappbode Reservoir Observatory (Harz Mountains, Germany). Environ Earth Sci 69:523–536. doi: 10.1007/s12665-014-3445-9 CrossRefGoogle Scholar
  60. Roth M (2005) Parallele Bildberechnung in einem Netzwerk von Workstations. Ph.D. thesis, Technischen Universität DarmstadtGoogle Scholar
  61. Schmidt C, Musolff A, Trauth N et al (2012) Transient analysis of fluctuations of electrical conductivity as tracer in the stream bed. Hydrol Earth Syst Sci 16:3689–3697. doi: 10.5194/hess-16-3689-2012 CrossRefGoogle Scholar
  62. Schroeder W, Martin K, Lorensen B (2006) Visualization toolkit: an object-oriented approach to 3D graphics, 4th edn. Kitware, Inc.Google Scholar
  63. Selle B, Rink K, Kolditz O (2013) Recharge and discharge controls on groundwater travel times and flow paths to production wells for the Ammer catchment in SW Germany. Environ Earth Sci 69(2):443–452. doi: 10.1007/s12665-013-2281-7 CrossRefGoogle Scholar
  64. Seymour NE, Gallagher AG, Roman SA (2002) Virtual reality training improves operating room performance. Ann Surg 236(4):458–464CrossRefGoogle Scholar
  65. Shao H, Dmytrieva S, Kolditz O et al (2009) Modeling reactive transport in non-ideal aqueous-solid solution system. Appl Geochem 24(7):1287–1300CrossRefGoogle Scholar
  66. Shao H, Nagel T, Roßkopf C et al (2013) Non-equilibrium thermo-chemical heat storage in porous media: part 2—a 1D computational model for a calcium hydroxide reaction system. Energy 60:271–282. doi: 10.1016/j.energy.2013.07.063 CrossRefGoogle Scholar
  67. Siebert C, Rödiger T, Mallast U et al (2014) Challenges to estimate surface- and groundwater flow in arid regions: the Dead Sea catchment. Sci Total Environ 485–486:828–841. doi: 10.1016/j.scitotenv.2014.04.010 CrossRefGoogle Scholar
  68. Singh A, Goerke UJ, Kolditz O (2011) Numerical simulation of non-isothermal compositional gas flow: application to carbon dioxide injection into gas reservoirs. Energy 36(5):3446–3458CrossRefGoogle Scholar
  69. Sun F, Shao H, Wang W et al (2012) Groundwater deterioration in Nankou – a suburban area of Beijing: data assessment and remediation scenarios. Environ Earth Sci 67(6):1573–1586. doi: 10.1007/s12665-012-1600-8 CrossRefGoogle Scholar
  70. TechViz XL (2014) http://www.techviz.net/products/techviz-xl-driver/. Accessed 15 Jul 2014
  71. ParaView Catalyst User’s Guide v1.0. http://www.paraview.org/Wiki/images/4/48/CatalystUsersGuide.pdf. Accessed 15-Jul-2014
  72. Trauth N, Schmidt C, Maier U et al (2013) Coupled 3D stream flow and hyporheic flow model under varying stream and ambient groundwater flow conditions in a pool-riffle system. Water Resour Res. doi: 10.1002/wrcr.20442 Google Scholar
  73. Unity-Game engine, tools and multiplatform. http://unity3d.com/unity. Accessed 15-Jul-2014
  74. Vienken T, Schelenz S, Rink K et al (2014) Sustainable intensive thermal use of the shallow subsurface—a critical view on the status Quo. Groundwater. doi: 10.1111/gwat.12206
  75. Virtual Reality—RWTH Aachen University. http://www.itc.rwth-aachen.de/cms/IT-Center/Forschung-Projekte/eubl/Virtuelle-Realitaet/lidx/1/. Accessed 22 Aug 2014
  76. Walther M, Böttcher N, Liedl R (2012) A 3D interpolation algorithm for layered tilted geological formations using an adapted inverse distance weighting approach. In: ModelCare 2011, Models—repositories of knowledge, pp 119–126. ISBN:978-1-907161-34-6Google Scholar
  77. Walther M, Delfs JO, Grundmann J et al (2012) Saltwater intrusion modeling: Verification and application to an agricultural coastal arid region in Oman. J Comput App Math 236(18):4798–4809. doi: 10.1016/j.cam.2012.02.008 CrossRefGoogle Scholar
  78. Walther M, Bilke L, Delfs JO et al (2014) Assessing the saltwater remediation potential of a three-dimensional, heterogeneous, coastal aquifer system. Environ Earth Sci. doi: 10.1007/s12665-014-3253-2 Google Scholar
  79. Wang W, Fischer T, Zehner B et al (2014) A parallel finite element method for two-phase flow processes in porous media: OpenGeoSys with PETSc. Environ Earth Sci. doi: 10.1007/s12665-014-3576-z Google Scholar
  80. Watanabe N, Wang W, McDermott C et al (2010) Uncertainty analysis of thermo-hydro-mechanical coupled processes in heterogeneous porous media. Comput Mech 45(4):263–280CrossRefGoogle Scholar
  81. Weill Cornel Medical College 3D CAVE. http://bit.ly/1wgWkwg. Accessed 22 Aug 2014
  82. Xie M, Bauer S, Kolditz O et al (2006) Numerical simulation of reactive processes in an experiment with partially saturated bentonite. J Contam Hydrol 83(1–2):122–147CrossRefGoogle Scholar
  83. Zacharias S, Bogena H, Samaniego L et al (2011) A network of terrestrial environmental observatories in Germany. Vadose Zone J 10(3):955–973CrossRefGoogle Scholar
  84. Zehner B (2010) Mixing virtual reality and 2D visualization—using virtual environments as visual 3D Information systems for discussion of data from geo- and environmental sciences. In: Richard P, Braz J, Hilton A (eds) GRAPP 2010—Proceedings of the International Conference on Computer Graphics Theory and Applications, Angers, France, May 17–21, pp 364–369. INSTICC PressGoogle Scholar
  85. Zehner B (2011) Constructing geometric models of the subsurface for finite element simulation. In: Conference of the International Association of Mathematical Geosciences 2011, Salzburg, Austria (2011). doi: 10.5242/iamg.2011.0069
  86. Zehner B (2010) Interactive Wind Park planning in a visualization center—giving control to the user. In: Buhmann E, Pietsch M, Kretzler E (eds) Peer reviewed proceedings of digital landscape architecture 2010. Wichmann Verlag, pp 287–294Google Scholar
  87. Zehner B (2008) Landscape visualization in high resolution stereoscopic visualization environments. In: Buhmann E, Pietsch M, Heins M (eds) Digital design in landscape architecture 2008, conference proceedings. Wichmann Verlag, pp 224–231Google Scholar
  88. Zehner B, Watanabe N, Kolditz O (2010) Visualization of gridded scalar data with uncertainty in geosciences. Computers and Geosciences 36:1268–1275. doi: 10.1016/j.cageo.2010.02.010 CrossRefGoogle Scholar
  89. ZieschJ, Aruffo C, Tanner D et al (2014) Geological structure of the CO2CRC Otway Project site, Australia: fault kinematics based on quantitative 3D seismic interpretation. Basin Research. SubmittedGoogle Scholar
  90. Zimmermann G, Reinicke A (2010) Hydraulic stimulation of a deep sandstone reservoir to develop an Enhanced Geothermal System: Laboratory and field experiments. Geothermics 39(1):70–77. doi: 10.1016/j.geothermics.2009.12.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Lars Bilke
    • 1
    Email author
  • Thomas Fischer
    • 1
  • Carolin Helbig
    • 1
  • Charlotte Krawczyk
    • 9
  • Thomas Nagel
    • 1
  • Dmitri Naumov
    • 7
  • Sebastian Paulick
    • 4
  • Karsten Rink
    • 1
  • Agnes Sachse
    • 2
  • Sophie Schelenz
    • 3
  • Marc Walther
    • 6
  • Norihiro Watanabe
    • 1
  • Björn Zehner
    • 8
  • Jennifer Ziesch
    • 9
  • Olaf Kolditz
    • 1
    • 5
  1. 1.Department of Environmental InformaticsHelmholtz Centre for Environmental ResearchLeipzigGermany
  2. 2.Department of Catchment HydrologyHelmholtz Centre for Environmental ResearchLeipzigGermany
  3. 3.Department of Monitoring and Exploration TechnologiesHelmholtz Centre for Environmental ResearchLeipzigGermany
  4. 4.Department of Ecologial ModellingHelmholtz Centre for Environmental ResearchLeipzigGermany
  5. 5.Chair of Applied Environmental System AnalysisTechnische University at DresdenDresdenGermany
  6. 6.Institute for Groundwater ManagementTechnische University at DresdenDresdenGermany
  7. 7.Faculty of Mechanical and Energy EngineeringLeipzig University of Applied SciencesLeipzigGermany
  8. 8.Federal Institute for Geosciences and Natural ResourcesBerlinGermany
  9. 9.Leibniz Institute for Applied GeophysicsHannoverGermany

Personalised recommendations