Skip to main content

Advertisement

Log in

Non-isothermal modeling of CO2 injection into saline aquifers at a low temperature

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

To investigate the effects of temperature on the CO2 storage in the deep saline aquifers, we set up a 2-D non-isothermal numerical model with simulating the CO2 injection into the aquifers at a low temperature. The evolution of the CO2 plume and the temperature in the aquifer were studied, and using temperature signal to monitor the arrival of CO2 plume was also evaluated. In addition, the deviance of the isothermal model was analyzed. The results show when the cold CO2 is injected into the aquifers, the aquifer can be divided into three zones in the direction away from the injection well during the injection period: temperature drop zone, temperature transition zone, and temperature rise zone. The temperature rise can reach approximately 1 °C in the temperature rise zone during the injection period, which should be enough for the temperature sensor to detect the arrival of the CO2 plume. However, the value of the temperature rise reduces with distance from the injection well. Consequently, we indicate that it is not suitable to monitor the long-term migration of the CO2 plume using temperature signal, especially after the injection stops. The initial formation temperature strongly affects the evolution of the CO2 plume and the temperature distribution after the CO2 injection. Not only the storage is safer, but also using temperature signal to monitor CO2 plume is more feasible in the cold aquifer. The deviance of the isothermal model is small in the mass fraction of dissolved CO2 and the arrival time of CO2 plume throughout the simulation. However, the deviance of pressure buildup is great and increases with time (up to 15 %) during the injection period. The non-isothermal model is necessary to accurately assess the pressure buildup around the injection well during the CO2 injection period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andre L, Azaroual M, Menjoz A (2010) Numerical simulations of the thermal impact of supercritical CO2 injection on chemical reactivity in a carbonate saline reservoir. Trans Porous Media 82:247–274. doi:10.1007/s11242-009-9474-2

    Article  Google Scholar 

  • Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289. doi:10.1007/s00254-003-0762-9

    Article  Google Scholar 

  • Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers Manage 44:3151–3175. doi:10.1016/S0196-8904(03)00101-8

    Article  Google Scholar 

  • Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manag 35:269–279. doi:10.1016/0196-8904(94)90060-4

    Article  Google Scholar 

  • Baines SJ, Worden RH (2004) The long-term fate of CO2 in the subsurface: natural analogues for CO2 storage. Geol Soc Lond Spec Publ 233:59–85

    Article  Google Scholar 

  • Bielinski A, Kopp A, Schütt H, Class H (2008) Monitoring of CO2 plumes during storage in geological formations using temperature signals: numerical investigation. Int J Greenh Gas Control 2:319–328. doi:10.1016/j.ijggc.2008.02.008

    Article  Google Scholar 

  • Brown CJ, Poiencot BK, Hudyma N, Albright B, Esposito RA (2014) An assessment of geologic sequestration potential in the panhandle of Florida USA. Environ Earth Sci 71:793–806. doi:10.1007/s12665-013-2481-1

    Article  Google Scholar 

  • Chadwick R, Holloway S, Brook M, Kirby G (2004) The case for underground CO2 sequestration in northern Europe. Geol Soc Lond Spec Publ 233:17–28

    Article  Google Scholar 

  • Corey AT (1954) The interrelation between gas and oil relative permeabilities. Prod Monthly 19:38–41

    Google Scholar 

  • Fischer S, Liebscher A, De Lucia M, Hecht L, Ketzin T (2013) Reactivity of sandstone and siltstone samples from the Ketzin pilot CO2 storage site-Laboratory experiments and reactive geochemical modeling. Environ Earth Sci 70:3687–3708. doi:10.1007/s12665-013-2669-4

    Article  Google Scholar 

  • Gaus I, Azaroual M, Czernichowski-Lauriol I (2005) Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geo 217:319–337. doi:10.1016/j.chemgeo.2004.12.016

    Article  Google Scholar 

  • Ghanbari S, Alzaabi Y, Pickup G, Mackay E, Gozalpour F, Todd A (2006) Simulation of CO2 storage in saline aquifers. Chem Eng Res Des 84:764–775. doi:10.1205/cherd06007

    Article  Google Scholar 

  • Gunter WD, Perkins EH, Hutcheon I (2000) Aquifer disposal of acid gases: modelling of water-rock reactions for trapping of acid wastes. Appl Geochem 15:1085–1095. doi:10.1016/S0883-2927(99)00111-0

    Article  Google Scholar 

  • Han WS, Stillman GA, Lu M, Lu CA, McPherson BJ, Park E (2010) Evaluation of potential nonisothermal processes and heat transport during CO2 sequestration. J Geophys Res Solid Earth 115:B07209. doi:10.1029/2009jb006745

    Google Scholar 

  • Han WS, Kim KY, Park E, McPherson BJ, Lee SY, Park MH (2012) Modeling of spatiotemporal thermal response to CO2 injection in saline formations: interpretation for monitoring. Trans Porous Media 93:381–399. doi:10.1007/s11242-012-9957-4

    Article  Google Scholar 

  • IPCC (2005) Carbon dioxide capture and storage. Cambridge University, Cambridge

    Google Scholar 

  • Lagneau V, Pipart A, Catalette H (2005) Reactive transport modelling of CO2 sequestration in deep saline aquifers. Oil Gas Sci Technol 60:231–248. doi:10.2516/ogst:2005014

    Article  Google Scholar 

  • Li C, Tien N-C, Zhang K, Jen C-P, Hsieh P-S, Huang S-Y, Maggi F (2013) Assessment of large-scale offshore CO2 geological storage in Western Taiwan Basin. Int J Greenh Gas Control 19:281–298. doi:10.1016/j.ijggc.2013.09.010

    Article  Google Scholar 

  • Liu FY, Lu P, Zhu C, Xiao YT (2011) Coupled reactive flow and transport modeling of CO2 sequestration in the Mt. Simon sandstone formation, Midwest USA. Int J Greenh Gas Control 5:294–307. doi:10.1016/j.ijggc.2010.08.008

    Article  Google Scholar 

  • Liu HJ, Hou ZM, Were P, Gou Y, Sun XL (2014) Simulation of CO2 plume movement in multilayered saline formations through multilayer injection technology in the Ordos Basin, China. Environ Earth Sci 71:4447–4462. doi:10.1007/s12665-013-2839-4

    Article  Google Scholar 

  • Lu M, Connell LD (2008) Non-isothermal flow of carbon dioxide in injection wells during geological storage. Int J Greenh Gas Control 2:248–258. doi:10.1016/s1750-5836(07)00114-4

    Article  Google Scholar 

  • Marbler H, Erickson KP, Schmidt M, Lempp C, Pollmann H (2013) Geomechanical and geochemical effects on sandstones caused by the reaction with supercritical CO2: an experimental approach to in situ conditions in deep geological reservoirs. Environ Earth Sci 69:1981–1998. doi:10.1007/s12665-012-2033-0

    Article  Google Scholar 

  • Novak K, Malvić T, Simon K (2013) Increased hydrocarbon recovery and CO2 management, a Croatian example. Environ Earth Sci 68:1187–1197. doi:10.1007/s12665-012-1819-4

    Article  Google Scholar 

  • Pruess K (2005) ECO2N: A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. Lawrence Berkeley National Laboratory, Report LBNL-57592, August

  • Pruess K (2011) ECO2M: A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2, including super-and sub-critical conditions, and phase change between liquid and gaseous CO2. Lawrence Berkeley National Laboratory, Report LBNL-4590E, May

  • Pruess K, García J (2002) Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ Geol 42:282–295. doi:10.1007/s00254-001-0498-3

    Article  Google Scholar 

  • Pruess K, Spycher N (2007) ECO2 N – A fluid property module for the TOUGH2 code for studies of CO2 storage in saline aquifers. Energy Convers Manag 48:1761–1767. doi:10.1016/j.enconman.2007.01.016

    Article  Google Scholar 

  • Pruess K, Oldenburg C, Moridis G (2012) TOUGH2 user’s guide, version 2.1. Report LBNL-43134, Lawrence Berkeley Laboratory, Berkeley, California, USA

  • Rayward-Smith WJ, Woods AW (2011) Some implications of cold CO2 injection into deep saline aquifers. Geophys Res Lett 38:1–6. doi:10.1029/2010gl046412

  • Ruan B, Xu R, Wei L, Ouyang X, Luo F, Jiang P (2013) Flow and thermal modeling of CO2 in injection well during geological sequestration. Int J Greenh Gas Control 19:271–280. doi:10.1016/j.ijggc.2013.09.006

    Article  Google Scholar 

  • Tran Ngoc TD, Lefebvre R, Konstantinovskaya E, Malo M (2014) Characterization of deep saline aquifers in the Bécancour area, St. Lawrence Lowlands, Québec, Canada: implications for CO2 geological storage. Environ Earth Sci 72:119–146. doi:10.1007/s12665-013-2941-7

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Vilarrasa V, Silva O, Carrera J, Olivella S (2013) Liquid CO2 injection for geological storage in deep saline aquifers. Int J Greenh Gas Control 14:84–96. doi:10.1016/j.ijggc.2013.01.015

    Article  Google Scholar 

  • White SP, Allis RG, Moore J, Chidsey T, Morgan C, Gwynn W, Adams M (2005) Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA. Chem Geo 217:387–405. doi:10.1016/j.chemgeo.2004.12.020

    Article  Google Scholar 

  • Xu T, Apps JA, Pruess K (2004) Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Appl Geochem 19:917–936. doi:10.1016/j.apgeochem.2003.11.003

    Article  Google Scholar 

  • Xu T, Apps JA, Pruess K (2005) Mineral sequestration of carbon dioxide in a sandstone-shale system. Chem Geo 217:295–318. doi:10.1016/j.chemgeo.2004.12.015

    Article  Google Scholar 

  • Yang F, Bai BJ, Dunn-Norman S, Nygaard R, Eckert A (2014) Factors affecting CO2 storage capacity and efficiency with water withdrawal in shallow saline aquifers. Environ Earth Sci 71:267–275. doi:10.1007/s12665-013-2430-z

    Article  Google Scholar 

  • Zerai B, Saylor BZ, Matisoff G (2006) Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio. Appl Geochem 21:223–240. doi:10.1016/j.apgeochem.2005.11.002

    Article  Google Scholar 

  • Zhang W, Li Y, Xu T, Cheng H, Zheng Y, Xiong P (2009) Long-term variations of CO2 trapped in different mechanisms in deep saline formations: a case study of the Songliao Basin, China. Int J Greenh Gas Control 3:161–180. doi:10.1016/j.ijggc.2008.07.007

    Article  Google Scholar 

  • Zhao R, Cheng J, Zhang K (2012a) CO2 plume evolution and pressure buildup of large-scale CO2 injection into saline aquifers in Sanzhao Depression, Songliao Basin, China. Trans Porous Media 95:407–424. doi:10.1007/s11242-012-0052-7

    Article  Google Scholar 

  • Zhao RR, Meng QH, Cheng JM (2012b) Fluid migration modeling of CO2 injection in deep saline aquifers-A case study of the Sanzhao Depression. Songliao Basin Rock and Soil Mechanics 33:1247–1252 (in Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their constructive suggestions for improving the quality of the manuscript. This study was supported by the Project of National Sciences Foundation of China (No. 41172217 and No. 41402212) and the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No. CUGL140814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmei Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Cheng, J. Non-isothermal modeling of CO2 injection into saline aquifers at a low temperature. Environ Earth Sci 73, 5307–5316 (2015). https://doi.org/10.1007/s12665-014-3781-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3781-9

Keywords

Navigation