Skip to main content

Advertisement

Log in

The distance decay of similarity in climate variation and vegetation dynamics

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The negative relationship between similarity and distance has been revealed in many subjects in geography and ecology fields. This study aimed to illustrate the strength of the distance-decay relationship in variation of climate and vegetation, and to quantify the relationship. Solving this problem could help to test some model specifications based on the climate and vegetation time series on sample sites, to determine the distance function in the spatial interpolation technique for meteorological factors and vegetation dynamics, and to use the distance-decay perspective as a quantitative technique to adapt strategies for future climate change and vegetation dynamics. To achieve the study goal, we quantified variation similarity using mutual information (MI), which measured the dependence between two variables or time series. We carried out a distance-decay analysis of climate and NDVI variation similarities, assessed by the MI against the log-transformed geographical distances between meteorological stations. The results suggest that all station pairs shared some similarity in the processes of climate variation and vegetation dynamics, and the MI values showed a gradual decrease with the increase of distance. In addition, temperature, precipitation, and NDVI time series had different MI value ranges and distance-decay ratios due to various influential factors. The logarithmic distance-decay relationships are of potential usefulness to the study of community similarity and the neutral theory of biogeography. Our research provides an approach for analyzing spatial patterns in relation to dependence and synchronization that may inform future studies aiming to understand the distribution and spatial relationship of climate and vegetation changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Astorga A, Oksanen J, Luoto M, Soininen J, Virtanen R, Muotka T (2011) Distance decay of similarity in freshwater communities: do macro-and microorganisms follow the same rules? Global Ecol Biogeogr 21(3):365–375

    Article  Google Scholar 

  • Baigorria GA, Jones JW (2010) GiST: a stochastic model for generating SPATIALLY and temporally correlated daily rainfall data. J Clim 23(22):5990–6008. doi:10.1175/2010jcli3537.1

    Article  Google Scholar 

  • Baigorria GA, Jones JW, O’Brien JJ (2007) Understanding rainfall spatial variability in southeast USA at different timescales. Int J Climatol 27(6):749–760. doi:10.1002/Joc.1435

    Article  Google Scholar 

  • Baselga A (2007) Disentangling distance decay of similarity from richness gradients: response to Soininen et al. 2007. Ecography 30:838–841

    Article  Google Scholar 

  • Bjorholm S, Svenning JC, Skov F, Balslev H (2008) To what extent does Tobler’s 1st law of geography apply to macroecology? A case study using American palms (Arecaceae). BMC Ecol 8(1):11

    Article  Google Scholar 

  • Brown ME, Pinzon JE, Didan K, Morisette JT, Tucker CJ (2006) Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and Landsat ETM + sensors. Geosci Remote Sens IEEE Trans 44(7):1787–1793. doi:10.1109/TGRS.2005.860205

    Article  Google Scholar 

  • Chen WR, Henebry GM (2010) Spatio-spectral heterogeneity analysis using EO-1 Hyperion imagery. Comput Geosci UK 36(2):167–170. doi:10.1016/j.cageo.2009.05.005

    Article  Google Scholar 

  • Chen F, Yuan Y, Wen W, Yu S, Fan Z, Zhang R, Zhang T, Shang H (2012) Tree-ring-based reconstruction of precipitation in the Changling Mountains, China, since ad 1691. Int J Biometeorol 56(4):765–774

    Article  Google Scholar 

  • Cody ML (1975) Towards a theory of continental species diversities: bird distributions over Mediterranean habitat gradients. Ecol Evol Communities 214:257

    Google Scholar 

  • Costantini ML, Zaccarelli N, Mandrone S, Rossi D, Calizza E, Rossi L (2012) NDVI spatial pattern and the potential fragility of mixed forested areas in volcanic lake watersheds. Forest Ecol Manag 285:133–141. doi:10.1016/j.foreco.2012.08.029

    Article  Google Scholar 

  • Cover TM, Thomas JA (2006) Elements of information theory, 2nd edn. Wiley-interscience, New York

    Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Davies RG, Orme CDL, Storch D, Olson VA, Thomas GH, Ross SG, Ding TS, Rasmussen PC, Bennett PM, Owens IPF (2007) Topography, energy and the global distribution of bird species richness. Proc R Soc B Biol Sci 274(1614):1189–1197

    Article  Google Scholar 

  • Domroes M, Ranatunge E (1993) Analysis of inter-station daily rainfall correlation during the southwest monsoon in the wet zone of Sri-Lanka. Geogr Ann A 75(3):137–148

    Article  Google Scholar 

  • Dornelas M, Connolly SR, Hughes TP (2006) Coral reef diversity refutes the neutral theory of biodiversity. Nature 440(7080):80–82

    Article  Google Scholar 

  • Duque A, Phillips JF, von Hildebrand P et al (2009) Distance decay of tree species similarity in protected areas on terra firme forests in Colombian Amazonia. Biotropica 41:599–607

    Article  Google Scholar 

  • Evans KL, James NA, Gaston KJ (2006) Abundance, species richness and energy availability in the North American avifauna. Global Ecol Biogeogr 15(4):372–385

    Article  Google Scholar 

  • Geerken R, Zaitchik B, Evans JP (2005) Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity. Int J Remote Sens 26(24):5535–5554. doi:10.1080/01431160500300297

    Article  Google Scholar 

  • Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proc Natl Acad Sci USA 101(20):7651–7656. doi:10.1073/pnas.0400814101

    Article  Google Scholar 

  • Gurgel HC, Ferreira NJ (2003) Annual and interannual variability of NDVI in Brazil and its connections with climate. Int J Remote Sens 24(18):3595–3609. doi:10.1080/0143116021000053788

    Article  Google Scholar 

  • Hofstra N, New M (2009) Spatial variability in correlation decay distance and influence on angular-distance weighting interpolation of daily precipitation over Europe. Int J Climatol 29(12):1872–1880. doi:10.1002/Joc.1819

    Article  Google Scholar 

  • Jarlan L, Mangiarotti S, Mougin E, Mazzega P, Hiernaux P, Le Dantec V (2008) Assimilation of SPOT/VEGETATION NDVI data into a sahelian vegetation dynamics model. Remote Sens Environ 112(4):1381–1394. doi:10.1016/j.rse.2007.02.041

    Article  Google Scholar 

  • Kadmon R, Pulliam HR (1993) Island biogeography: effect of geographical isolation on species composition. Ecology 74(4):978–981

  • Kerr JT, Ostrovsky M (2003) From space to species: ecological applications for remote sensing. Trends Ecol Evol 18(6):299–305

    Article  Google Scholar 

  • Kraskov A, Stögbauer H, Grassberger P (2004) Estimating mutual information. Phys Rev E 69(6):066138

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd English edn. Elsevier Science, Amsterdam

    Google Scholar 

  • Lhermitte S, Verbesselt J, Jonckheere I, Nackaerts K, van Aardt JAN, Verstraeten WW, Coppin P (2008) Hierarchical image segmentation based on similarity of NDVI time series. Remote Sens Environ 112(2):506–521. doi:10.1016/j.rse.2007.05.018

    Article  Google Scholar 

  • Lhermitte S, Verbesselt J, Verstraeten WW, Coppin P (2011) A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sens Environ 115(12):3129–3152. doi:10.1016/j.rse.2011.06.020

    Article  Google Scholar 

  • Li SC, Zhao ZQ, Wang Y, Wang YL (2011) Identifying spatial patterns of synchronization between NDVI and climatic determinants using joint recurrence plots. Environ Earth Sci 64:851–859

    Article  Google Scholar 

  • Lichstein JW (2007) Multiple regression on distance matrices: a multivariate spatial analysis tool. Plant Ecol 188(2):117–131

    Article  Google Scholar 

  • Lobo A, Maisongrande P (2008) Searching for trends of change through exploratory data analysis of time series of remotely sensed images of SW Europe and NW Africa. Int J Remote Sens 29(17–18):5237–5245. doi:10.1080/01431160802036441

    Article  Google Scholar 

  • Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    Google Scholar 

  • Martinez B, Cassiraga E, Camacho F, Garcia-Haro J (2010) Geostatistics for mapping leaf area index over a cropland landscape: efficiency sampling assessment. Remote Sens Basel 2(11):2584–2606. doi:10.3390/Rs2112584

    Article  Google Scholar 

  • Maselli F, Chiesi M (2006) Integration of multi-source NDVI data for the estimation of Mediterranean forest productivity. Int J Remote Sens 27(1):55–72

    Article  Google Scholar 

  • Millward AA, Kraft CE (2004) Physical influences of landscape on a large-extent ecological disturbance: the northeastern North American ice storm of 1998. Landsc Ecol 19(1):99–111

    Article  Google Scholar 

  • Morlon H, Chuyong G, Condit R, Hubbell S, Kenfack D, Thomas D, Valencia R, Green JL (2008) A general framework for the distance-decay of similarity in ecological communities. Ecol Lett 11(9):904–917

    Article  Google Scholar 

  • Myneni R, Tucker C, Asrar G, Keeling C (1998) Interannual variations in satellite-sensed vegetation index data from 1981 to 1991. J Geophys Res 103(D6):6145–6160

    Article  Google Scholar 

  • Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26(4):867–878

    Article  Google Scholar 

  • Palmer MW (2005) Distance decay in an old-growth neotropical forest. J Veg Sci 16:161–166

    Article  Google Scholar 

  • Prates-Clark CD, Saatchi SS, Agosti D (2008) Predicting geographical distribution models of high-value timber trees in the Amazon Basin using remotely sensed data. Ecol Model 211(3–4):309–323. doi:10.1016/j.ecolmodel.2007.09.024

    Article  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication (Urbana, IL). Univ Ill Press 19(7):1

    Google Scholar 

  • Soininen J, McDonald R, Hillebrand H (2007) The distance decay of similarity in ecological communities. Ecography 30(1):3–12

    Article  Google Scholar 

  • Sui DZ (2004) Tobler’s first law of geography: a big idea for a small world? Ann Assoc Am Geogr 94(2):269–277

    Article  Google Scholar 

  • Tobler WR (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46:234–240

    Article  Google Scholar 

  • Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science 299(5604):241–244. doi:10.1126/science.1078037

    Article  Google Scholar 

  • Viedma O, Torres I, Perez B, Moreno JM (2012) Modeling plant species richness using reflectance and texture data derived from QuickBird in a recently burned area of Central Spain. Remote Sens Environ 119:208–221. doi:10.1016/j.rse.2011.12.024

    Article  Google Scholar 

  • Vuilleumier F (1970) Insular biogeography in continental regions. I. The northern Andes of South America. Am Nat 104(938):373–388

  • Walsh SJ, Crawford TW, Welsh WF, Crews-Meyer KA (2001) A multiscale analysis of LULC and NDVI variation in Nang Rong district, northeast Thailand. Agr Ecosyst Environ 85(1–3):47–64

    Article  Google Scholar 

  • White MA, De Beurs KM, Didan K, Inouye DW, Richardson AD, Jensen OP, O’Keefe J, Zhang G, Nemani RR, Van Leeuwen WJD, Brown JF, De Wit A, Schaepman M, Lin X, Dettinger M, Bailey AS, Kimball J, Schwartz MD, Baldocchi DD, Lee JT, Lauenroth WK (2009) Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob Change Biol 15(10):2335–2359. doi:10.1111/j.1365-2486.2009.01910.x

    Article  Google Scholar 

  • Whittaker RH (1975) Communities and ecosystems. MacMillan Publishing, New York

    Google Scholar 

  • Zhang X, Hu Y, Zhuang D, Qi Y (2009) The spatial pattern and differentiation of NDVI in Mongolia Plateau. Geogr Res Aust 1:002

    Google Scholar 

  • Zhao ZQ, Gao JB, Wang YL, Liu JG, Li SC (2014) Exploring spatially variable relationships between NDVI and climatic factors in a transition zone using geographically weighted regression. Theoret Appl Climatol. doi:10.1007/s00704-014-1188-x

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by grants from the National Natural Science Foundation of China (NSFC, Nos. 41330747 and 41130534) and China Postdoctoral Science Foundation funded project (2014M560014). The authors are grateful to the anonymous reviewers for offering valuable suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiqiang Zhao or Yanglin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Li, S., Liu, J. et al. The distance decay of similarity in climate variation and vegetation dynamics. Environ Earth Sci 73, 4659–4670 (2015). https://doi.org/10.1007/s12665-014-3751-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3751-2

Keywords

Navigation