Bioweathering related to groundwater circulation in cavities of magmatic rock massifs

Abstract

Runoff flows not only on magmatic rocks massifs surface but also through their internal discontinuities, which define the secondary permeability of the rock. The effects, especially erosive, of the water movement on surface are well known although it is not the same with the effects of water infiltration through the rock. Especially, when it does so at low speed (trickles or seepage) granular disaggregation of the rock is produced at small scale, associated with a specific type of sediment (speleothems) of clast-supported open fabric which is able to store very small volumes of interstitial water, becoming a specific subterraneous microenvironment where some organisms develop their biological cycle totally or partially. Some products derived from the metabolic activity of these organisms incorporated to the infiltration water increase their ability to attack (weathering and dissolution) the rock. This process ends during the dry season when the troglobiont organisms die and the water-transported load, either dragged or in solution (mainly silicon), is sedimented forming the speleothems. The study of these deposits using several techniques, mineralogical, sedimentological, and biological (including metagenomics), indicates an influence of microorganisms on the formation of these deposits; therefore, it is correct to consider them as biospeleothems.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  Google Scholar 

  2. Anderson CA (1930) Opal stalactites and stalagmites from a lava tube in northern California. Am J Sci 20:22–26

    Article  Google Scholar 

  3. Aubrecht R, Brewer-Carías Ch, Smída B, Audy M, Kovácik L (2008) Anatomy of biologically mediated opal speleothems in the World’s largest sandstone cave: Cueva Charles Brewer, Chimantá Plateau, Venezuela. Sed Geol 203:181–195

    Article  Google Scholar 

  4. Aubrecht R, Barrio-Amorós CL, Breure ASH, Brewer-Carías C, Derka T, Fuentes-Ramos OA, Gregor M, Kodada J, Kováčik L, Lánczos T, Lee NM, Liščák P, Schlögl J, Šmída B, Vlček L (2012) Venezuelan Tepuis. Their caves and biota. Acta Geologica Slovaca AGEOS Monograph. Comenius University, Bratislava, pp 169

    Google Scholar 

  5. Barker WW, Welch SA, Banfield JF (1997) Biogeochemical weathering of silicate minerals. In: Banfield JF and Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals. Mineralogical Society of America, Washington, pp 391–428

  6. Barton HA, Northup DE (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Studies 69(1):163–178

    Google Scholar 

  7. Barton HA, Spear JR, Pace NR (2001) Microbial life in the underworld: Biogenicity in secondary mineral formations. Geomicrobiol J 18(3):359–368

    Article  Google Scholar 

  8. Boston PJ, Spilde MN, Northup DE, Curry MD, Melim LA, Rosales-Lagarde L (2009) Microorganisms as speleogenetic agents: geochemical diversity but geomicrobial unity. In: Klimchouk AB, Ford DC (eds) Hypogene Speleogenesis and Karst Hydrogeology of Artesian Basins. Ukranian Institute of Speleology and Karstology, Special Paper 1, Simferopol, pp 280

  9. Bustillo MA (1995) Una nueva ultraestructura de ópalo CT en silcretas. Posible indicador de influencia bacteriana. Estud Geol 51:3–8

    Google Scholar 

  10. Bustillo MA, Aparicio A, Carvalho R (2010) Estromatolitos silíceos en espeleotemas de la Cueva de Branca Opala (Isla de Terceira, Azores). Macla 13:51–52

    Google Scholar 

  11. Caldcleugh A (1829) On the geology of Rio de Janeiro. Trans Geol Soc 2:69–72

    Google Scholar 

  12. Cañaveras JC, Sánchez-Moral S, Soler V, Saiz-Jiménez C (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18:223–240

    Article  Google Scholar 

  13. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Gonzalez Pena A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PT, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) Nature Methods 7:335–336

  14. Cheeptham N (2013) Advances and challenges in studying cave microbial diversity. In Cheeptham N (ed) Cave microbiomes—a novel resource for drug discovery. Springer Briefs in Microbiology, vol 1, pp 1–34

  15. Cheeptham N, Sadoway T, Rule D, Watson K, Moote P, Soliman LC, Azad N, Donkor KK, Horne D (2013) Cure from the cave: volcanic cave actinomycetes and their potential in drug discovery. Int J Speleol Tampa FL (USA) 42(1):35–47

    Article  Google Scholar 

  16. Daza Brunet R, Bustillo Revuelta MA (2014) Exceptional silica speleothems in a volcanic cave: a unique example of silicification and sub-aquatic opaline stromatolite formation (Terceira, Azores). Sedimentology. doi:10.1111/sed.12130

    Google Scholar 

  17. Engel AS (2010) Microbial Diversity of Cave Ecosystems. In: Barton L et al (eds) Geomicrobiology: molecular and environmental perspective. Springer Science and Business Media B.V, The Netherlands, pp 219–238

    Google Scholar 

  18. Epure L, Meleg IN, Munteanu C, Roban RD, Moldovan OT (2014) Bacterial and fungal diversity of quaternary cave sediment deposits. Geomicrobiol J 31(2):116–127

    Article  Google Scholar 

  19. Forti P (2001) Biogenic speleothems: an overview. Int J Speleol 30(1):39–56

    Article  Google Scholar 

  20. Franklin SP, Ajas A Jr, Dewers TA, Tieh TT (1994) The role of carboxilic acids in albite and quartz dissolution: an experimental study under diagenetic conditions. Geochim Cosmochim Acta 58(20):4259–4279

    Article  Google Scholar 

  21. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next generation sequencing data. Bioinformatics 28:3150–3152

    Article  Google Scholar 

  22. Gaal L, Bella P (2008) Granite and granite caves in the Western Carpathians. Cadernos do Laboratorio Xeolóxico de Laxe 33:11–18

    Google Scholar 

  23. García-Ruíz JM, López Acevedo V, Tavira P (1981) Crecimiento de triquitos sobre gel de sílice. I. Aplicación al BrK. Estudios Geológicos 37:3–8

    Google Scholar 

  24. González López L, Vidal Romaní JR, López Galindo MJ, Vaqueiro Rodríguez M, Sanjurjo Sánchez J (2013) First data on testate amoebae in speleothems of caves in igneous rocks. Cadernos do Laboratorio Xeolóxico de Laxe 37:37–56

    Google Scholar 

  25. Balasch M, Boston P, Hathaway J, Enes Dapkevicius M, García M, Northup D, Riquelme C, Snider J, Spilde M, Stone F (2012) Life in Earth’s lava caves: implications for life detection on other planets. In: Hanslmeier A, Kempe S, Seckbach J (eds) Life on earth and other planetary bodies. Cellular origin, life in extreme habitats and astrobiology, vol 24. Springer, Netherlands, pp 459–484

  26. Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. doi:10.1038/ismej.2011.41 (e-pub ahead of print 7 April 2011)

    Google Scholar 

  27. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA Genes. Appl Environ Microbiol 72(3):1719–1728

    Article  Google Scholar 

  28. Kashima N, Irie T, Kinoshita N (1987) Diatom contributions of coralloid speleothems, from Togawa-Sakaidani-do Cave in Miyazaki Prefecture, Central Kyushu, Japan. Int J Speleol 16:95–100

    Article  Google Scholar 

  29. Konhauser KO, Phoenix VR, Bottrell SH, Adams DG, Head IM (2001) Microbial-silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology 48:15–433

    Article  Google Scholar 

  30. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  Google Scholar 

  31. Miller AZ, Pereira MFC, Calaforra JM, Forti P, Dionísio A, Saiz-Jimenez C (2014) Siliceous speleothems and associated microbe-mineral interactions from ana heva lava tube in easter island (chile). Geomicrobiol J 31(3):236–245

    Article  Google Scholar 

  32. Riquelme C, Northup D (2013) Microbial ecology: caves as an extreme habitat. In: Cheeptham N (ed) Cave microbiomes: a novel resource for drug discovery. Springer briefs in microbiology, vol 1, pp 85–108

  33. Sallstedt T, Ivarsson M, Lundberg JEK, Sjöberg R, Vidal Romaní JR (2014) Speleothem formation and microbial colonization in a granite/dolerite cave Northern Sweden. Int J Speleol 43(3):305–313

    Article  Google Scholar 

  34. Sanjurjo Sánchez J, Vidal Romaní JR (2011) Luminescence dating of pseudokarst speleothems: a first approach. In: 2nd Conference on Micro-raman and luminescence studies in the Earth and Planetary Sciences (CORALS II). May 18–21, Madrid, Spain

  35. Stockmann GJ, Wolff-Boenisch D, Nicolas Bovet N, Gislason SR, Oelkers EH (2014) The role of silicate surfaces on calcite precipitation kinetics. Geochim Cosmochim Acta 135:231–250

    Article  Google Scholar 

  36. Takaya Y (2014) Which constituent mineral is dominant in granite weathering? A solution-sided approach through a laboratory experiment. Geoderma 230–230:204–211

    Article  Google Scholar 

  37. Twidale CR, Vidal Romaní JR (2005) Landforms and geology of granite terrains. Balkema, London 351 pp

    Google Scholar 

  38. Van Rosmalen GM, Marcheé WGH (1976) A comparison of gypsum crystals grown in silica gel and agar in the presence of additives. J Cryst Growth 35:169–176

    Article  Google Scholar 

  39. Vidal Romaní JR, Sanjurjo J, Vaquerio M, Fernández Mosquera D (2010) Speleothem development and biological activity in granite cavities. Geomorphol Relief Process Environ 4:337–346

    Article  Google Scholar 

  40. Vidal Romaní JR, Vaqueiro M (2007) Types of granite cavities and associated speleothems: genesis and evolution. Nature Conserv 63:41–46

    Google Scholar 

  41. Vidal Romaní JR, Vilaplana JM (1984) Datos preliminares para el estudio de espeleotemas en cavidades graníticas. Cadernos do Laboratorio Xeolóxico de Laxe 7:305–324

    Google Scholar 

  42. Vidal Romaní JR, Grajal M, Vilaplana JM, Rodríguez R, Macias F, Fernández S, Hernández Pacheco E (1979) Procesos actuales: micromodelado en el granito de Monte Louro, Galicia España (Proyecto Louro). Actas IV Reunión G. E. T. C, Banyoles (España), pp 246–266

    Google Scholar 

  43. Vidal Romaní JR, Vilaplana JM, Martí C, Serrat D (1983) Rasgos del micromodelado actual en el Pirineo granítico español. Acta Geológica Hispánica (Geologica Acta) 18:55–65

    Google Scholar 

  44. Vidal Romaní JR, Ramanohison H, Rabenandrasana S (1997) Géomorphologie granitique du Massif de l’Andringitra: sa relation avec l’évolution de l’île pendant le Cenozoïque. Cadernos do Laboratorio Xeolóxico de Laxe 22:183–208

    Google Scholar 

  45. Vidal Romaní JR, Bourne JA, Twidale CR, Campbell EM (2003) Siliceous cylindrical speleothems in granitoids in warm semiarid and humid climates. Zeitschrift für Geomorphologie 47(4):417–437

    Google Scholar 

  46. Watkins JJ, Behr HJ, Behr K (2011) Fossil microbes in opal from Lightning Ridge- implications fot the formation of opal. Geological Survey of New South Wales, Quarterly Notes 136:21

    Google Scholar 

  47. Webb JA, Finlayson BL (1987) Incorporation of Al, Mg, and water in opal-A: evidence from speleothems. Am Mineral 72:204–1210

    Google Scholar 

  48. Welch SA, Ullman WJ (1996) Feldspar dissolution in acidic and organic solutions: Compositional and pH dependence of dissolution rate. Geochim Cosmochim Acta 60(16):2939–2948

    Article  Google Scholar 

  49. Westall F, Cavalazzi B (2011) Biosignatures in Rocks. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Netherlands, pp 189–201

  50. Wojcik Z (1961) Karst phenomena and caves in the Karkonosze granites. Die Höhle 12:76

    Google Scholar 

  51. Woo KS, Choi DW, Lee KC (2008) Silicification of cave corals from some lava tube caves in the Jeju Island, Korea: implications for speleogenesis and a proxy for paleoenvironmental change during the late quaternary. Quatern Int 176–177:82–95

    Article  Google Scholar 

  52. Wright VP (1989) Terrestrial stromatolites and laminar calcretes: a review. Sed Geol 65:1–13

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ana Martelli for the layout and translation of the paper into English. All Genetics & Biology, SL has carried out the genomic analysis of the samples of speleothems. This paper is a contribution to the Research Projects CGL2011-30141 of the Ministry of Education and Science of Spain and EM2013/056 of the Xunta of Galicia, Spain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan Ramón Vidal-Romaní.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vidal-Romaní, J.R., González-López, L., Vaqueiro, M. et al. Bioweathering related to groundwater circulation in cavities of magmatic rock massifs. Environ Earth Sci 73, 2997–3010 (2015). https://doi.org/10.1007/s12665-014-3743-2

Download citation

Keywords

  • Magmatic rock caves
  • Organic activity
  • Biospeleothems
  • Opal-A
  • Whiskers
  • Druse
  • Micromineral
  • Gypsum
  • Calcite