Advertisement

Environmental Earth Sciences

, Volume 73, Issue 6, pp 2997–3010 | Cite as

Bioweathering related to groundwater circulation in cavities of magmatic rock massifs

  • Juan Ramón Vidal-Romaní
  • Laura González-López
  • Marcos Vaqueiro
  • Jorge Sanjurjo-Sánchez
Thematic Issue

Abstract

Runoff flows not only on magmatic rocks massifs surface but also through their internal discontinuities, which define the secondary permeability of the rock. The effects, especially erosive, of the water movement on surface are well known although it is not the same with the effects of water infiltration through the rock. Especially, when it does so at low speed (trickles or seepage) granular disaggregation of the rock is produced at small scale, associated with a specific type of sediment (speleothems) of clast-supported open fabric which is able to store very small volumes of interstitial water, becoming a specific subterraneous microenvironment where some organisms develop their biological cycle totally or partially. Some products derived from the metabolic activity of these organisms incorporated to the infiltration water increase their ability to attack (weathering and dissolution) the rock. This process ends during the dry season when the troglobiont organisms die and the water-transported load, either dragged or in solution (mainly silicon), is sedimented forming the speleothems. The study of these deposits using several techniques, mineralogical, sedimentological, and biological (including metagenomics), indicates an influence of microorganisms on the formation of these deposits; therefore, it is correct to consider them as biospeleothems.

Keywords

Magmatic rock caves Organic activity Biospeleothems Opal-A Whiskers Druse Micromineral Gypsum Calcite 

Notes

Acknowledgments

We thank Ana Martelli for the layout and translation of the paper into English. All Genetics & Biology, SL has carried out the genomic analysis of the samples of speleothems. This paper is a contribution to the Research Projects CGL2011-30141 of the Ministry of Education and Science of Spain and EM2013/056 of the Xunta of Galicia, Spain.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  2. Anderson CA (1930) Opal stalactites and stalagmites from a lava tube in northern California. Am J Sci 20:22–26CrossRefGoogle Scholar
  3. Aubrecht R, Brewer-Carías Ch, Smída B, Audy M, Kovácik L (2008) Anatomy of biologically mediated opal speleothems in the World’s largest sandstone cave: Cueva Charles Brewer, Chimantá Plateau, Venezuela. Sed Geol 203:181–195CrossRefGoogle Scholar
  4. Aubrecht R, Barrio-Amorós CL, Breure ASH, Brewer-Carías C, Derka T, Fuentes-Ramos OA, Gregor M, Kodada J, Kováčik L, Lánczos T, Lee NM, Liščák P, Schlögl J, Šmída B, Vlček L (2012) Venezuelan Tepuis. Their caves and biota. Acta Geologica Slovaca AGEOS Monograph. Comenius University, Bratislava, pp 169Google Scholar
  5. Barker WW, Welch SA, Banfield JF (1997) Biogeochemical weathering of silicate minerals. In: Banfield JF and Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals. Mineralogical Society of America, Washington, pp 391–428Google Scholar
  6. Barton HA, Northup DE (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Studies 69(1):163–178Google Scholar
  7. Barton HA, Spear JR, Pace NR (2001) Microbial life in the underworld: Biogenicity in secondary mineral formations. Geomicrobiol J 18(3):359–368CrossRefGoogle Scholar
  8. Boston PJ, Spilde MN, Northup DE, Curry MD, Melim LA, Rosales-Lagarde L (2009) Microorganisms as speleogenetic agents: geochemical diversity but geomicrobial unity. In: Klimchouk AB, Ford DC (eds) Hypogene Speleogenesis and Karst Hydrogeology of Artesian Basins. Ukranian Institute of Speleology and Karstology, Special Paper 1, Simferopol, pp 280Google Scholar
  9. Bustillo MA (1995) Una nueva ultraestructura de ópalo CT en silcretas. Posible indicador de influencia bacteriana. Estud Geol 51:3–8Google Scholar
  10. Bustillo MA, Aparicio A, Carvalho R (2010) Estromatolitos silíceos en espeleotemas de la Cueva de Branca Opala (Isla de Terceira, Azores). Macla 13:51–52Google Scholar
  11. Caldcleugh A (1829) On the geology of Rio de Janeiro. Trans Geol Soc 2:69–72Google Scholar
  12. Cañaveras JC, Sánchez-Moral S, Soler V, Saiz-Jiménez C (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18:223–240CrossRefGoogle Scholar
  13. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Gonzalez Pena A, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PT, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) Nature Methods 7:335–336Google Scholar
  14. Cheeptham N (2013) Advances and challenges in studying cave microbial diversity. In Cheeptham N (ed) Cave microbiomes—a novel resource for drug discovery. Springer Briefs in Microbiology, vol 1, pp 1–34Google Scholar
  15. Cheeptham N, Sadoway T, Rule D, Watson K, Moote P, Soliman LC, Azad N, Donkor KK, Horne D (2013) Cure from the cave: volcanic cave actinomycetes and their potential in drug discovery. Int J Speleol Tampa FL (USA) 42(1):35–47CrossRefGoogle Scholar
  16. Daza Brunet R, Bustillo Revuelta MA (2014) Exceptional silica speleothems in a volcanic cave: a unique example of silicification and sub-aquatic opaline stromatolite formation (Terceira, Azores). Sedimentology. doi: 10.1111/sed.12130 Google Scholar
  17. Engel AS (2010) Microbial Diversity of Cave Ecosystems. In: Barton L et al (eds) Geomicrobiology: molecular and environmental perspective. Springer Science and Business Media B.V, The Netherlands, pp 219–238CrossRefGoogle Scholar
  18. Epure L, Meleg IN, Munteanu C, Roban RD, Moldovan OT (2014) Bacterial and fungal diversity of quaternary cave sediment deposits. Geomicrobiol J 31(2):116–127CrossRefGoogle Scholar
  19. Forti P (2001) Biogenic speleothems: an overview. Int J Speleol 30(1):39–56CrossRefGoogle Scholar
  20. Franklin SP, Ajas A Jr, Dewers TA, Tieh TT (1994) The role of carboxilic acids in albite and quartz dissolution: an experimental study under diagenetic conditions. Geochim Cosmochim Acta 58(20):4259–4279CrossRefGoogle Scholar
  21. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next generation sequencing data. Bioinformatics 28:3150–3152CrossRefGoogle Scholar
  22. Gaal L, Bella P (2008) Granite and granite caves in the Western Carpathians. Cadernos do Laboratorio Xeolóxico de Laxe 33:11–18Google Scholar
  23. García-Ruíz JM, López Acevedo V, Tavira P (1981) Crecimiento de triquitos sobre gel de sílice. I. Aplicación al BrK. Estudios Geológicos 37:3–8Google Scholar
  24. González López L, Vidal Romaní JR, López Galindo MJ, Vaqueiro Rodríguez M, Sanjurjo Sánchez J (2013) First data on testate amoebae in speleothems of caves in igneous rocks. Cadernos do Laboratorio Xeolóxico de Laxe 37:37–56Google Scholar
  25. Balasch M, Boston P, Hathaway J, Enes Dapkevicius M, García M, Northup D, Riquelme C, Snider J, Spilde M, Stone F (2012) Life in Earth’s lava caves: implications for life detection on other planets. In: Hanslmeier A, Kempe S, Seckbach J (eds) Life on earth and other planetary bodies. Cellular origin, life in extreme habitats and astrobiology, vol 24. Springer, Netherlands, pp 459–484Google Scholar
  26. Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. doi: 10.1038/ismej.2011.41 (e-pub ahead of print 7 April 2011)Google Scholar
  27. Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA Genes. Appl Environ Microbiol 72(3):1719–1728CrossRefGoogle Scholar
  28. Kashima N, Irie T, Kinoshita N (1987) Diatom contributions of coralloid speleothems, from Togawa-Sakaidani-do Cave in Miyazaki Prefecture, Central Kyushu, Japan. Int J Speleol 16:95–100CrossRefGoogle Scholar
  29. Konhauser KO, Phoenix VR, Bottrell SH, Adams DG, Head IM (2001) Microbial-silica interactions in Icelandic hot spring sinter: possible analogues for some Precambrian siliceous stromatolites. Sedimentology 48:15–433CrossRefGoogle Scholar
  30. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659CrossRefGoogle Scholar
  31. Miller AZ, Pereira MFC, Calaforra JM, Forti P, Dionísio A, Saiz-Jimenez C (2014) Siliceous speleothems and associated microbe-mineral interactions from ana heva lava tube in easter island (chile). Geomicrobiol J 31(3):236–245CrossRefGoogle Scholar
  32. Riquelme C, Northup D (2013) Microbial ecology: caves as an extreme habitat. In: Cheeptham N (ed) Cave microbiomes: a novel resource for drug discovery. Springer briefs in microbiology, vol 1, pp 85–108Google Scholar
  33. Sallstedt T, Ivarsson M, Lundberg JEK, Sjöberg R, Vidal Romaní JR (2014) Speleothem formation and microbial colonization in a granite/dolerite cave Northern Sweden. Int J Speleol 43(3):305–313CrossRefGoogle Scholar
  34. Sanjurjo Sánchez J, Vidal Romaní JR (2011) Luminescence dating of pseudokarst speleothems: a first approach. In: 2nd Conference on Micro-raman and luminescence studies in the Earth and Planetary Sciences (CORALS II). May 18–21, Madrid, SpainGoogle Scholar
  35. Stockmann GJ, Wolff-Boenisch D, Nicolas Bovet N, Gislason SR, Oelkers EH (2014) The role of silicate surfaces on calcite precipitation kinetics. Geochim Cosmochim Acta 135:231–250CrossRefGoogle Scholar
  36. Takaya Y (2014) Which constituent mineral is dominant in granite weathering? A solution-sided approach through a laboratory experiment. Geoderma 230–230:204–211CrossRefGoogle Scholar
  37. Twidale CR, Vidal Romaní JR (2005) Landforms and geology of granite terrains. Balkema, London 351 ppCrossRefGoogle Scholar
  38. Van Rosmalen GM, Marcheé WGH (1976) A comparison of gypsum crystals grown in silica gel and agar in the presence of additives. J Cryst Growth 35:169–176CrossRefGoogle Scholar
  39. Vidal Romaní JR, Sanjurjo J, Vaquerio M, Fernández Mosquera D (2010) Speleothem development and biological activity in granite cavities. Geomorphol Relief Process Environ 4:337–346CrossRefGoogle Scholar
  40. Vidal Romaní JR, Vaqueiro M (2007) Types of granite cavities and associated speleothems: genesis and evolution. Nature Conserv 63:41–46Google Scholar
  41. Vidal Romaní JR, Vilaplana JM (1984) Datos preliminares para el estudio de espeleotemas en cavidades graníticas. Cadernos do Laboratorio Xeolóxico de Laxe 7:305–324Google Scholar
  42. Vidal Romaní JR, Grajal M, Vilaplana JM, Rodríguez R, Macias F, Fernández S, Hernández Pacheco E (1979) Procesos actuales: micromodelado en el granito de Monte Louro, Galicia España (Proyecto Louro). Actas IV Reunión G. E. T. C, Banyoles (España), pp 246–266Google Scholar
  43. Vidal Romaní JR, Vilaplana JM, Martí C, Serrat D (1983) Rasgos del micromodelado actual en el Pirineo granítico español. Acta Geológica Hispánica (Geologica Acta) 18:55–65Google Scholar
  44. Vidal Romaní JR, Ramanohison H, Rabenandrasana S (1997) Géomorphologie granitique du Massif de l’Andringitra: sa relation avec l’évolution de l’île pendant le Cenozoïque. Cadernos do Laboratorio Xeolóxico de Laxe 22:183–208Google Scholar
  45. Vidal Romaní JR, Bourne JA, Twidale CR, Campbell EM (2003) Siliceous cylindrical speleothems in granitoids in warm semiarid and humid climates. Zeitschrift für Geomorphologie 47(4):417–437Google Scholar
  46. Watkins JJ, Behr HJ, Behr K (2011) Fossil microbes in opal from Lightning Ridge- implications fot the formation of opal. Geological Survey of New South Wales, Quarterly Notes 136:21Google Scholar
  47. Webb JA, Finlayson BL (1987) Incorporation of Al, Mg, and water in opal-A: evidence from speleothems. Am Mineral 72:204–1210Google Scholar
  48. Welch SA, Ullman WJ (1996) Feldspar dissolution in acidic and organic solutions: Compositional and pH dependence of dissolution rate. Geochim Cosmochim Acta 60(16):2939–2948CrossRefGoogle Scholar
  49. Westall F, Cavalazzi B (2011) Biosignatures in Rocks. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Netherlands, pp 189–201Google Scholar
  50. Wojcik Z (1961) Karst phenomena and caves in the Karkonosze granites. Die Höhle 12:76Google Scholar
  51. Woo KS, Choi DW, Lee KC (2008) Silicification of cave corals from some lava tube caves in the Jeju Island, Korea: implications for speleogenesis and a proxy for paleoenvironmental change during the late quaternary. Quatern Int 176–177:82–95CrossRefGoogle Scholar
  52. Wright VP (1989) Terrestrial stromatolites and laminar calcretes: a review. Sed Geol 65:1–13CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Juan Ramón Vidal-Romaní
    • 1
    • 2
  • Laura González-López
    • 1
    • 2
  • Marcos Vaqueiro
    • 1
    • 2
  • Jorge Sanjurjo-Sánchez
    • 1
    • 2
  1. 1.Instituto Universitario de GeologíaCoruñaSpain
  2. 2.Clube Espeleolóxico TrapaVigoSpain

Personalised recommendations