Abstract
The increasing evidence of climate change motivates the need of quantifying its impacts on groundwater resources and their associated ecosystems to minimize its negative effects. Climate change is expected to produce an increase in temperature and a decrease in precipitation in many places of the Iberian Peninsula. These changes will reduce the groundwater resources. The rise of the sea level in coastal aquifers is an additional threat to groundwater resources. The effects of climate change in the groundwater resources of the Plana de La Galera and Tortosa alluvial aquifers near the Ebre River Delta have been evaluated with water balance and groundwater flow models and three regional climate models by taking into account simultaneously the reduction of groundwater recharge and the rising of the Mediterranean Sea level. The models were calibrated with historic data from 1998 to 2008 and then used to simulate the impacts of climate change in groundwater levels in the simulation periods 2020–2050 and 2069–2099. The climate models predict an increase in average temperature and a decrease in rainfall in the simulation periods 2020–2050 and 2069–2099 compared to the control period 1960–1990. Consequently, the mean annual recharge in the Plana de La Galera aquifer will decrease 23 % in the period 2020–2050 and 27 % in the period 2069–2099 compared to the mean annual recharge in the control period 1960–1990. The recharge in the Tortosa alluvial aquifer will decrease 22 % in the period 2020–2050 and 31 % in the period 2069–2099. The predicted changes in recharge vary significantly from rain-fed to irrigated (drip and flood) areas. In rain-fed areas, the decrease in groundwater recharge is approximately equal to the decrease in precipitation. According to the models here developed, the reduction in recharge will lead to a significant lowering of hydraulic heads in the recharge areas of the Plana de La Galera aquifer for the period 2069–2099. Near the Ebre River Delta, however, groundwater heads will increase slightly due to the rise of the mean sea level.
Similar content being viewed by others
References
AEMet (2009) Generación de escenarios regionalizados de cambio climático para España [(in Spanish) Generation of regional climate change scenarios for Spain]. Agencia Estatal de Meteorología, Ministerio de Medio Ambiente y Medio Rural y Marino (Ministry of Environment and Rural and Maritime Affairs), Madrid, p 166. ISBN: 978-84-8320-470-2
Álvares D, Samper J (2009) Evaluación de los recursos hídricos de la cuenca hidrográfica del 1 Ebro mediante GISBALAN [(in Spanish) Water Resources Assessment in the Ebre 2 River basin using GIS-BALAN]. In: IX Jornadas de Zona no Saturada, ZNS’09, 3 Barcelona, pp 491–498
Álvares D, Samper J, García-Vera MA (2009) Evaluación del efecto del cambio climático en los recursos hídricos de la cuenca hidrográfica del Ebro mediante modelos hidrológicos [(in Spanish) Assessment of the Impacts of the Climate Change in the Ebre River basin using hydrological models]. In: IX Jornadas de Zona no Saturada, ZNS’09. Barcelona, pp 499–506. ISBN 978-84-96736-83-2
Aquaveo (2011) The surface-water modeling solution. http://aquaveo.com/sms
Bell VA, Kay AL, Jones RG, Moore RJ (2007) Development of a high resolution grid-based river flow model for use with regional climate model output. Hydrol Earth Syst Sci 11:532–549
Bossard M, Feranec J, Otahel J (2000) Corine Land Cover technical guide: Addendum 2000. In: EEA Technical Report 40
Candela L, von Igel W, Elorza FJ, Aronica G (2009) Impact assessment of combined climate and management scenarios on groundwater resources and associated wetland (Majorca, Spain). J Hydrol 376(3–4):510–527
CHE (1999) Delimitación de unidades hidrogeológicas de la cuenca del Ebro (Plan Hidrológico) [(in Spanish) Delineation of hydrogeology units in the Ebre River basin (Water Plan)]. INTECSA (Consulting firm), Zaragoza, Spain. http://www.chebro.es/contenido.visualizar.do?idContenido=14353. (Last access Jan 2014)
CHE (2004) Official maps of crops and irrigated areas in the Ebre River Basin. http://oph.chebro.es/ContenidoCartoRegadios.htm. (Last access Jan 2014)
Chirivella V, Capilla JE, Pérez MA (2011) Impacto del cambio climático en los recursos hídricos de la Cuenca Hidrográfica del Júcar [(in Spanish) Impacts of the climate change on the water resources of the Júcar Basin]. In: 3rd international week on risk analysis, dam safety, dam security, and critical infrastructure management, Universitat Politècnica de València, October 17–18, Valencia, Spain
Dai Z, Samper J (2006) Inverse modeling of water flow and multicomponent reactive transport in coastal aquifer systems. J Hydrol 327(3–4):447–461. doi:10.1016/j.jhydrol.2005.11.052
Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307(1–4):145–163
Espinosa S (2014) Procesos de recarga y descarga de acuíferos mediante trazadores naturales: aplicación al área Mediterránea (Aquifer recharge and discharge by means of natural tracers: application to the Mediterranean area, in Spanish), PhD Dissertation, Polytechnic University of Cataluña, Barcelona, Spain
Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707
Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Global Planet Change 63(2–3):90–104
Green TR, Taniguchi M, Kooi H (2007) Potential impacts of climate change and human activity on subsurface water resources. Vadose Zone J 6:531–532
IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 976
MMA (Spanish Ministry of Environment) (2005) Evaluación Preliminar de los Impactos en España por Efecto del Cambio Climático [(in Spanish) Preliminar Assessment of the impacts of the climate change in Spain]. Project ECCE: Final Report. Centro de Publicaciones MMA, Spain, p 846
Molinero J, Samper J (2004) Groundwater flow and solute transport in fracture zones: an improved model for a large-scale field experiment at Äspö (Sweden). J Hydraul Res 42:157–172
Ortuño F, Jódar J, Carrera J (2009) Cambio climático y recarga de acuíferos en Catalunya [(in Spanish) Climate change and groundwater recharge in Catalunya]. In: Agua y Cambio Climático. Diagnosis de los impactos previstos en Cataluña. Agència Catalana de l’Aigua. http://aca-web.gencat.cat/aca/documents/es/publicacions/impactes_hidrologics/capitol11_lowress.pdf. (Last access January 2014)
Parry ML (2000) Assessment of the potential effects and adaptations for climate change in Europe: The Europe ACACIA Project. In: Parry ML (ed) Jackson Environment Institute. University of East Anglia, Norwich, p 320
Pisani B, Samper J, Ribeiro L, Fakir Y, Stigter T (2011) Evaluación de los impactos del cambio climático en el acuífero de la Plana de La Galera [(In Spanish) Assessment of the impacts of the climate change in the Plana de La Galera aquifer]. In: Martínez J and Sánchez N (eds) Jornadas de la Zona no Saturada Vol X (ZNS 2011), pp 353–358. ISBN 978-84-694-6642-1
Pisani B, Samper J, Li Y (2013) Estimación de los efectos del cambio climático en la recarga de los acuíferos de la Plana de La Galera y del aluvial del Ebro en Tortosa mediante modelos hidrológicos de balance de agua [(in Spanish) Assessment of the effects of the climate change on groundwater recharge in La Galera Plain and Ebre alluvial aquifers (Spain) by means of hydrological water balance models]. Boletín Geológico y Minero 124 (4):535–549. ISSN:0366-0176
Samper J, Huguet Ll, Ares J, García-Vera MA (1999) Manual del usuario del programa VISUAL BALAN v.1.0: Código interactivo para la realización de balances hidrológicos y la estimación de la recarga [(in Spanish) VISUAL BALAN v1.0 user manual: an interactive code for water balance and recharge estimation]. ENRESA Technical Publication, Madrid, p 134
Samper J, Yang C, Montenegro L (2003) User’s manual of CORE2D: a code for groundwater flow and reactive solute transport. Universidade da Coruña, A Coruña
Samper J, Yang C, Naves A, Yllera A, Hernández A, Molinero J, Soler JM, Hernán P, Mayor JC, Astudillo J (2006) A fully 3-D anisotropic model of DI-B in situ diffusion experiment in the Opalinus clay formation. Phys Chem Earth 31:531–540
Samper J, Xu T, Yang C (2009) A sequential partly iterative approach for multicomponent reactive transport with CORE2D. Comput Geosci. doi:10.1007/s10596-008-9119-5
Samper J, Yang C, Zheng L, Montenegro L, Xu T, Dai Z, Zhang G, Lu C, Moreira S (2011) CORE2D V4: a code for water flow, heat and solute transport, geochemical reactions, and microbial processes, Chapter 7 of the Electronic book Groundwater Reactive Transport Models. In: Zhang F, Yeh G-T, Parker C, Shi X (eds) Bentham Science Publishers, pp 161–186. ISBN 978-1-60805-029-1. http://www.benthamscience.com/ebooks/9781608053063/index.htm
Samper J, Li Y, Pisani B (2014) An evaluation of climate change impacts on groundwater flow in the La Plana de la Galera and Tortosa alluvial aquifers (Spain). Environ Earth Sci. doi:10.1007/s12665-014-3734-3
Stigter TY, Nunes JP, Pisani B, Fakir Y, Hugman R, Li Y, Tomé S, Ribeiro L, Samper J, Oliveira R, Monteiro JP, Silva A, Tavares PCF, Shapouri M, Cancela da Fonseca L, El Himer H (2012) Comparative assessment of climate change and its impacts on three coastal aquifers in the Mediterranean. Reg Environ Change 12–4:1–18. doi:10.1007/s10113-012-0377-3
Tourís R (1986) Recursos hídrics subterranis de la Vessant Catalana de l’Ebre. Primera fase: Baix Ebre [(in Catalonian) Groundwater resources of the Catalonian part of the Ebre River basin. Phase 1: Low Ebre River]. Generalitat de Catalunya, Servei Geològic de Catalunya, p 297
Treidel H, Martin-Bordes JJ, Gurdak JJ (eds) (2011) Climate change effects on groundwater resources: a global synthesis of findings and recommendations. In: International Association of Hydrogeologists (IAH): International Contributions to Hydrogeology. Taylor and Francis publishing, p 414. ISBN 978-0415689366
Van der Linden P, Mitchell JFB (eds) (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project. Met Office Hadley Centre, Exeter
Vidal JP, Wade SD (2008) Multimodel projections of catchment-scale precipitation regime. J Hydrol 353:143–158. doi:10.1016/j.jhydrol.2008.02.003
Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long-range experimental hydrologic forecasting for the eastern United States. J Geophys Res 107:4429–4444. doi:10.1029/2001JD000659
Yang C, Samper J, Molinero J, Bonilla M (2007) Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radioactive waste repository. J Contam Hydrol 93(2007):130–148
Yang C, Samper J, Montenegro L (2008) A coupled non-isothermal reactive transport model for long-term geochemical evolution of a HLW repository in clay. Environ Geol 53:1627–1638. doi:10.1007/s00254-007-0770-2
Yarnal B (1998) Integrated regional assessment and climate change impacts in river basins. Clim Res 11(1):65–74
Yllera A, Hernández A, Mingarro M, Quejido A, Sedano LA, Soler JM, Samper J, Molinero J, Barcala JM, Martín PL, Fernández M, Wersin P, Rivas P, Hernán P (2004) DI-B experiment: planning, design and performance of an in situ diffusion experiment in the Opalinus clay formation. Appl Clay Sci 26:181–196
Zheng L, J Samper, L Montenegro, AM Fernández, (2010) A coupled THMC model of a heating and hydration laboratory experiment in unsaturated compacted FEBEX bentonite. J Hydrol 386(3–4):80–94. 10.1016/j.jhydrol.2010.03.009. ISSN:0022-1694
Acknowledgments
This research was carried within the CLIMWAT project funded under the CIRCLE-MED network of the CIRCLE-2 ERA-Net. Funding was provided by Xunta de Galicia through project 08MDS016118PR. We are thankful to Carlos Loaso from the Agència Catalana de l’Aigua and Emilio Custodio (Polytechnic University of Cataluña) for their support. We wish to thank all the people that collaborated in the CLIMWAT project from Portugal and Morocco and contributed to its success. Funding for the latest stages of the work was provided by the Spanish Ministry of Economy and Competitiveness (Project CGL2012-36560), and Fund 2012/181 from “Consolidación e estruturación de unidades de investigación competitivas”, Grupos de referencia competitiva”) of Xunta de Galicia. We thank Emilio Custodio and a second anonymous reviewer for their constructive and thoughtful comments and suggestions, which have contributed to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Samper, J., Li, Y. & Pisani, B. An evaluation of climate change impacts on groundwater flow in the Plana de La Galera and Tortosa alluvial aquifers (Spain). Environ Earth Sci 73, 2595–2608 (2015). https://doi.org/10.1007/s12665-014-3734-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12665-014-3734-3