Advertisement

Environmental Earth Sciences

, Volume 73, Issue 2, pp 913–917 | Cite as

Limnogeology, news in brief

  • Michael R. RosenEmail author
  • Elizabeth Gierlowski-Kordesch
International View Point and News

We’ve invited Michael R. Rosen, water quality specialist within the USGS Water Science Field Team in Carson City and Elizabeth Gierlowski-Kordesch, professor of geology at Ohio University, to take a look at the intriguing new developments that are emerging in limnogeologic studies. These studies are increasing our understanding of how climate and movements of the Earth’s surface influence terrestrial environments, as well as how contaminants are distributed and retained in the environment. They present a selection of recent significant research on sediments, rock, and biota that have been preserved in modern and ancient lake basins.

References

  1. Alonso-Zarza AM, Tanner LH (2010) Carbonates in continental settings, Volumes 1 and 2. Developments in Sedimentology,v. 61 and 62. Elsevier, AmsterdamGoogle Scholar
  2. Alonso-Zarza AM, Meléndez A, Martín-García R, Herrero MJ, Martín-Pérez A (2012) Discriminating between tectonism and climate signature in palustrine deposits: lessons from the Miocene of the Teruel Graben, NE Spain. Earth Sci Rev 113:141–160CrossRefGoogle Scholar
  3. Aswasereelert W, Meyers SR, Carroll AR, Peters SE, Smith ME, Feigl KL (2013) Basin-scale cyclostratigraphy of the Green River Formation, Wyoming. Geol Soc Am Bull 125:216–228CrossRefGoogle Scholar
  4. Battarbee RW, Anderson NJ, Bennion H, Simpson GL (2012) Combining limnological and palaeolimnological data to disentangle the effects of nutrient pollution and climate change on lake ecosystems: problems and potential. Freshw Biol 57:2091–2106CrossRefGoogle Scholar
  5. Blais JM, Rosen MR, Smol JP (2015) Environmental contaminants: using natural archives to track sources and long-term trends of pollution. Developments in Paleoenvironmental research. Springer, Dordrecht (in press)Google Scholar
  6. Bohacs KM (2012) Relation of hydrocarbon reservoir potential to lake basin type: an integrated approach to unraveling complex genetic relations among fluvial, lake plain, lake margin, and lake center strata. In: Baganz OW, Bartov Y, Bohacs K, Nummedal D (eds) Lacustrine sandstone reservoirs and hydrocarbon systems. American Association of Petroleum Geologists Memoir, vol 95. pp 13–56Google Scholar
  7. Bohacs KM, Carroll AR, Neal JE, Mankiewicz PJ (2000) Lake-basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework. In: Gierlowski-Kordesch EH, Kelts KR (eds) Lake basins through space and time, American Association of Petroleum Geologists Studies in Geology, vol 46. pp 3–34Google Scholar
  8. Bohacs KM, Carroll AR, Neal JE (2003) Lessons from large lake systems- thresholds, nonlinearity, and strange attractors. In: Chan MA, Archer AW (eds) Extreme depositional environments: mega end members in geologic time, Geological Society of America Special Paper, vol 370. pp 75–90Google Scholar
  9. Bohacs KM, Grabowski G Jr, Carroll AR (2007) Lithofacies architecture and variations in expression of sequence stratigraphy within representative intervals of the Green River Formation, Greater Green River Basin, Wyoming and Colorado. Mt Geol 44:39–60Google Scholar
  10. D’Anjou RM, Bradley RS, Balascio NL, Finkelstein DB (2012) Climate impacts on human settlement and agricultural activities in northern Norway revealed through sediment biogeochemistry. Proc Natl Acad Sci 109:20332–20337CrossRefGoogle Scholar
  11. Doebbert AC, Johnson CM, Carroll AR, Beard BL, Pietras JT, Rhodes Carson M, Norsted B, Throckmorton LA (2014) Controls on Sr isotopic evolution in lacustrine systems: Eocene Green River Formation, Wyoming. Chem Geol 380:172–189CrossRefGoogle Scholar
  12. García del Cura MA, Sanz-Montero ME, De Los Ríos MA, Ascaso C (2014) Microbial dolomite in freshwater carbonate deposits. Sedimentology 61:41–55CrossRefGoogle Scholar
  13. Gierlowski-Kordesch EH, Finkelstein DB, Truchan JJ, Kallini KD (2013) Carbonate lakes associated with distal siliciclastic perennial-river systems. J Sediment Res 83:1114–1129CrossRefGoogle Scholar
  14. Gilbert GK (1890) Lake Bonneville, US Geological Survey. Government Printing Office, Washington, 438 pGoogle Scholar
  15. Gray JE, Pribil MJ, Van Metre PC, Borrok DM, Thapalia A (2013) Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA. Appl Geochem 29:1–12CrossRefGoogle Scholar
  16. Honkonen O, Rantalainen A-L (2013) Impact of urbanization on the concentrations and distribution of organic contaminants in boreal lake sediments. Environ Monit Assess 185:1437–1449CrossRefGoogle Scholar
  17. Jackson TA (2001) Variations in the isotope composition of mercury in a freshwater sediment sequence and food web. Can J Fish Aquat Sci 58:185–196CrossRefGoogle Scholar
  18. Jackson TA (2013) Mass-dependent and mass-independent variations in the isotope composition of mercury in a sediment core from Lake Ontario as related to pollution history and biogeochemical processes. Chem Geol 355:88–102CrossRefGoogle Scholar
  19. Jackson TA, Muir DCG, Vincent WF (2004) Historical variations in the stable isotope composition of mercury in arctic lake sediments. Environ Sci Technol 38:2813–2821CrossRefGoogle Scholar
  20. Last FM, Last WM (2012) Lacustrine carbonates of the northern Great Plains of Canada. Sed Geol 277–278:1–31CrossRefGoogle Scholar
  21. Last FM, Last WM, Halden NM (2012) Modern and late Holocene dolomite formation: Manito Lake, Saskatchewan, Canada. Sed Geol 281:222–237CrossRefGoogle Scholar
  22. Lico MS (2004) Gasoline-related organics in Lake Tahoe before and after prohibition of carbureted two-stroke engines. Lake Reserv Manag 20:164–174CrossRefGoogle Scholar
  23. Lico MS, Johnson BT (2007) Gasoline-related compounds in Lakes Mead and Mohave, Nevada, 2004–2006. In: US geological survey scientific investigations report 2007–5144. p 28Google Scholar
  24. Ma J, Hintelmann H, Kirk JL, Muir DCG (2013) Mercury concentrations and mercury isotope composition in lake sediment cores from the vicinity of a metal smelting facility in Flin Flon, Manitoba. Chem Geol 336:96–102CrossRefGoogle Scholar
  25. Mahler BJ, Van Metre PC, Bashara TJ, Wilson JT, Johns DA (2005) Parking lot sealcoat: an unrecognized source of urban PAHs. Environ Sci Technol 39:5560–5566CrossRefGoogle Scholar
  26. Mancuso AC, Caselli AT (2012) Paleolimnology evolution in rift basins: the Ischigualasto-Villa Unión Basin (central-western Argentina) during the Triassic. Sed Geol 275–276:38–54CrossRefGoogle Scholar
  27. McGlue MM, Silva A, Zani HJ, Corradini FA, Trees MA, Ellis GS, Parolin M, Swarzenski PW, Cohen AS, Assine ML (2011) Limnogeology in Brazil’s “forgotten wilderness”: a synthesis from the large floodplain lakes of the Pantanal. J Paleolimnol 46:273–289CrossRefGoogle Scholar
  28. McGlue MM, Silva A, Zani H, Corradini FA, Parolin M, Abel EJ, Cohen AS, Assine ML, Ellis GS, Trees MA, Keurten S, dos Santos Gradella F, Rasbold GG (2012) Lacustrine records of Holocene pulse dynamics in the Upper Paraguay River watershed (Pantanal wetlands, Brazil). Quatern Res 78:285–294CrossRefGoogle Scholar
  29. McGlue MM, Cohen AS, Ellis GS, Kowler AL (2013) Late quaternary stratigraphy, sedimentology, and geochemistry of an underfilled lake basin in the Puna plateau (northwest Argentina). Basin Res 25:638–658CrossRefGoogle Scholar
  30. Renaut RW, Gierlowski-Kordesch EH (2010) Lakes. In: Dalrymple R, James N (eds) Facies models, 4th edn. Geological Association of Canada, Toronto, pp 541–575Google Scholar
  31. Renaut RW, Owen RB, Jones B, Tiercelin J-J, Tarits C, Ego JK, Konhauser KO (2013) Impact of lake-level changes on the formation of thermogene travertine in continental rifts: evidence from Lake Bogoria, Kenya rift valley. Sedimentology 60:428–468CrossRefGoogle Scholar
  32. Ridge JC, Balco G, Bayless RL, Beck CC, Carter LB, Dean JL, Voytek EB, Wei JH (2012) The new North American varve chronology: a precise record of southeastern Laurentide ice sheet deglaciation and climate, 18.2–12.5 kyr BP, and correlations with Greenland ice core records. Am J Sci 312:685–722CrossRefGoogle Scholar
  33. Russell IC (1885) Geological history of Lake Lahontan, a quaternary lake of northwestern Nevada. US Geological Survey, Washington, DC, p 288Google Scholar
  34. Sanz-Montero ME, Rodríguez-Aranda JB, García del Cura MA (2008) Dolomite-silica stromatolites in Miocene lacustrine deposits from the Duero Basin, Spain: the role of organotemplates in the precipitation of dolomite. Sedimentology 55:7290750Google Scholar
  35. Sanz-Montero ME, Rodríguez-Aranda JB, Pérez-Soba C (2009a) Microbial weathering of Fe-rich phyllosilicates and formation of pyrite in the dolomite precipitating environment of a Miocene lacustrine system. Eur J Miner 21:163–175CrossRefGoogle Scholar
  36. Sanz-Montero ME, Rodríguez-Aranda JB, García del Cura MA (2009b) Bioinduced precipitation of barite and celestite in dolomite microbialites: examples form Miocene lacustrine sequences in the Madrid and Duero Basins, Spain. Sed Geol 222:138–148CrossRefGoogle Scholar
  37. Scott JJ, Buatois LA, Mángano MG (2012) Lacustrine environments. In: Knaust D, Bromley RG (eds) Trace Fossils as Indicators of Sedimentary Environments, Developments in Sedimentology, vol 64. Elsevier, Amsterdam, pp 379–417CrossRefGoogle Scholar
  38. Valero-Garcés BL, Moreno A, Navas A, Mata P, Machín J, Delgado Huertas A, González Samperíz P, Schwalb A, Morellón M, Cheng H, Edwards RL (2008) The Taravilla lake and tufa deposits (Central Iberian Range, Spain) as palaeohydrological and palaeoclimatic indicators. Palaeogeogr Palaeoclimatol Palaeoecol 259:136–156CrossRefGoogle Scholar
  39. Valero-Garcés BL, Morellón M, Moreno A, Corella JP, Martín-Puertas C, Barreiro F, Pérez A, Giralt S, Mata-Campo MP (2014) Lacustrine carbonates of Iberian karst lakes: sources, processes, and depositional environments. Sed Geol 299:1–29CrossRefGoogle Scholar
  40. Van Metre PC, Mahler BJ (2010) Contribution of PAHs from coal–tar pavement sealcoat and other sources to 40 US lakes. Sci Total Environ 409:334–344CrossRefGoogle Scholar
  41. Van Metre PC, Mahler BJ (2014) PAH concentrations in lake sediment decline following ban on coal-tar-based pavement sealants in Austin, Texas. Environ Sci Technol 48:7222–7228CrossRefGoogle Scholar
  42. Zech M, Glaser B (2009) Compound-specific δ18O analyses of neutral sugars in soils using GC–Py–IRMS: problems, possible solutions and a first application. Rapid Commun Mass Spectrom 23:3522–3532CrossRefGoogle Scholar
  43. Zech M, Tuthorn M, Zech R, Schültz F, Zech W, Glaser B (2014) A 16-ka δ18O record of lacustrine sugar biomarkers from the high Himalaya reflects Indian Summer Monsoon variability. J Paleolimnol 51:241–251CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michael R. Rosen
    • 1
    Email author
  • Elizabeth Gierlowski-Kordesch
    • 2
  1. 1.U.S. Geological SurveyWater Science Field TeamCarson CityUSA
  2. 2.Department of Geological SciencesOhio UniversityAthensUSA

Personalised recommendations