Skip to main content

Advertisement

Log in

Probabilistic modeling of rainfall-induced shallow landslide using a point-estimate method

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The assessment of rainfall-induced shallow landslides using a physical-based model requires accounting for the uncertainty of soil parameters that cannot be accurately quantified. In this study, the modified Iverson model was integrated with the Rosenblueth point-estimate method to probabilistically model rainfall-induced shallow landslides, while simultaneously considering the uncertainty and correlation of soil parameters. Using various soil parameters, hillslope conditions, and hydrological conditions, the applicability of the Rosenblueth point-estimate method was compared with that of the Monte Carlo simulation method. The simulated results indicated that the Rosenblueth point-estimate method can accurately and efficiently assess the probability of rainfall-induced shallow landslides. A lognormal distribution of the safety factor can be assumed when the soil parameters are lognormally distributed random variables. Accounting for the correlation of soil parameters decreases the standard deviation of the safety factor, but does not affect the mean of the safety factor. Neglecting the correlation of soil parameters could substantially misestimate the probability of rainfall-induced shallow landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

c :

Soil cohesion

d Z :

Water depth

d LZ :

Slope depth

E[]:

Expect value

FS:

Factor of safety

I Z :

Rainfall intensity

K sat :

Saturated hydraulic conductivity

p :

Weight factor

P r :

Probability

S S :

Specific storage

T :

Rainfall duration

X :

Point mass

\( Z \) :

The coordinate

\( \psi \) :

Groundwater pressure head

\( \theta \) :

Soil volumetric water content

\( \alpha \) :

Slope angle

\( \phi \) :

Soil friction angle

\( \varPhi \) :

Standard normally accumulative distribution function

\( \gamma_{\text{sat}} \) and \( \gamma_{\text{w}} \) :

The unit weights of saturated soil and water

\( \mu_{\text{x}} \) :

Mean of input random variable

\( \sigma_{\text{x}} \) :

Standard deviation of input random variable

\( \gamma_{\text{x}} \) :

Skewness coefficient of input random variable

\( \mu_{\text{FS}} \) :

Mean of safety factor

\( \sigma_{\text{FS}} \) :

Standard deviation of safety factor

\( \mu_{\text{x}} \) :

Mean of input random variable

\( \rho \) :

The correlation coefficient

References

  • Abramson LW, Lee TS, Sharma S, Boyce GM (2001) Slope stability and stabilization methods. Wiley, New York

    Google Scholar 

  • Baum RL, Savage WZ, Godt JW (2002) TRIGRS-a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Virginia, US Geological Survey Open file report 02-424

  • Baum RL, Savage WZ, Godt JW (2008) TRIGRS-a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Virginia, US Geological Survey Open file report 2008-1159

  • Borga M, Fontana GD, De Ros D, Marchi L (1998) Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ Geol 35:81–88

    Article  Google Scholar 

  • Brejda JJ, Moorman TB, Smith JL, Karlen DL, Allan DL, Dao TH (2000) Distribution and variability of surface soil properties at a regional scale. Soil Sci Soc Am J 64(3):974–982

    Article  Google Scholar 

  • Carsel RF, Parrish RS (1988) Developing joint probability distributions of soil water retention characteristics. Water Resour Res 24(5):755–769

    Article  Google Scholar 

  • Chen JC, Jan CD, Lee JM (2007) Probabilistic analysis of landslide potential of an inclined uniform soil layer of infinite length : theorem. Environ Geol 51:1239–1248

    Article  Google Scholar 

  • Christian JT, Baecher GB (2002) The point-estimate method with large numbers of variables. Int J Numer Anal Meth Geomech 26:1515–1529

    Article  Google Scholar 

  • Collins BD, Znidarcic D (2004) Stability analyses of rainfall induced landslides. J Geotech Geoenviron Eng 130(4):362–372

    Article  Google Scholar 

  • Crosta GB, Frattini P (2003) Distributed modeling of shallow landslides triggered by intense rainfall. Natural Hazards Earth Syst Sci 3:81–93

    Article  Google Scholar 

  • D’Odorico P, Fagherazzi S, Rigon R (2005) Potential for landsliding : dependence on hyetograph characteristics. J Geophysical Res Earth Surf 110(F1)

  • Frattini P, Crosta GB, Fusi N, Negro PD (2004) Shallow landslides in pyroclastic soil : a distributed modeling approach for hazard assessment. Eng Geol 73:277–295

    Article  Google Scholar 

  • Gui SX, Zhang RD, Turner JP, Xue XZ (2000) Probabilistic slope stability analysis with stochastic soil hydraulic conductivity. J Geotech Geoenviron Eng 126(1):1–9

    Article  Google Scholar 

  • Harr ME (1989) Probabilistic estimates for multivariate analyses. Appl Math Model 13(5):313–318

    Article  Google Scholar 

  • Hong HP (1996) Point-estimate moment-based reliability analysis. Civil Eng Syst 13(4):281–294

    Article  Google Scholar 

  • Hong HP (1998) An efficient point estimate method for probabilistic analysis. Reliability Eng Syst Saf 59(3):261–267

    Article  Google Scholar 

  • Hsu SH, Ni CF, Hung PF (2002) Assessment of three infiltration formulas based on model fitting on Richards’ equation. J Hydrol Eng 7(5):373–379

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910

    Article  Google Scholar 

  • Keim RF, Skaugset AE (2003) Modelling effects of forest canopies on slope stability. Hydrol Process 17:1457–1467

    Article  Google Scholar 

  • Lan HX, Lee CF, Zhou CH, Martin CD (2005) Dynamic characteristics analysis of shallow landslides in response to rainfall event using GIS. Environ Geol 47:254–267

    Article  Google Scholar 

  • Liu CN, Chen JH (2006) Mapping liquefaction potential considering spatial correlations of CPT measurements. J Geotech Geoenviron Eng 132:1178–1187

    Article  Google Scholar 

  • Liu CN, Wu CC (2008) Mapping susceptibility of rainfall-triggered shallow landslides using a probabilistic approach. Environ Geol 55:907–915

    Article  Google Scholar 

  • Massih D, Soubra AH, Low BK (2008) Reliability-based analysis and design of strip footings against bearing capacity failure. J Geotech Geoenviron Eng 134(7):917–928

    Article  Google Scholar 

  • Montgomery DR, Dietrich WE (1994) A physically based model for the topographic control on shallow landslide. Water Resour Res 30:83–92

    Google Scholar 

  • Morrissey MM, Wieczorek GF, Morgan BA (2001) A comparative analysis of hazard models for predicting debris flows in Madison County, Virginia. US Geological Survey Open file report 01-67

  • Nour A, Slimani A, Laouami N (2002) Foundation settlement statistics via finite element analysis. Comput Geotech 29(8):641–672

    Article  Google Scholar 

  • Park HJ, Um JG, Woo I, Kim JW (2012) The evaluation of the probability of rock wedge failure using point estimate method. Environ Earth Sci 65:353–361

    Article  Google Scholar 

  • Parkin TB, Meisinger JJ, Chester ST, Starr JL, Robinson JA (1988) Evaluation of statistical estimation methods for lognormally distributed variables. Soil Sci Soc Am J 52(2):323–329

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids in porous mediums. Physics 1:318–333

    Article  Google Scholar 

  • Tsai TL (2008) The influence of rainstorm pattern on shallow landslide. Environ Geol 53(7):1563–1570

    Article  Google Scholar 

  • Tsai TL, Chen HF (2010) Effects of degree of saturation on shallow landslides triggered by rainfall. Environ Earth Sci 59(6):1285–1295

    Article  Google Scholar 

  • Tsai TL, Chiang SJ (2013) Modeling of layered infinite slope failure triggered by rainfall. Environ Earth Sci 68:1429–1434

    Article  Google Scholar 

  • Tsai TL, Wang JK (2011) Examination of influences of rainfall patterns on shallow landslides due to dissipation of matric suction. Environ Earth Sci 63(1):65–75

    Article  Google Scholar 

  • Tsai TL, Yang JC (2006) Modeling of rainfall-triggered shallow landslide. Environ Geol 50(4):525–534

    Article  Google Scholar 

  • Tung YK, Yen BC (2005) Hydrosystems Engineering Uncertainty Analysis. McGraw-Hill Companies Inc, New York

    Google Scholar 

  • Wallach R, Grigorin G, Rivlin J (1997) The errors in surface runoff prediction by neglecting the relationship between infiltration rate and overland flow depth. J Hydrol 200:243–259

    Article  Google Scholar 

  • Wang C, Esaki T, Xie M, Qiu C (2006) Landslide and debris-flow hazard analysis and prediction using GIS in Minamata-Hougawachi area, Japan. Environ Geol 51:91–102

    Article  Google Scholar 

  • Wu W, Sidle RC (1995) A distributed slope stability model for steep forested basins. Water Resour Res 31:2097–2110

    Article  Google Scholar 

  • Zhou G, Esaki T, Mitani Y, Xie M, Mori J (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Eng Geol 68:373–386

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tung-Lin Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsai, TL., Tsai, PY. & Yang, PJ. Probabilistic modeling of rainfall-induced shallow landslide using a point-estimate method. Environ Earth Sci 73, 4109–4117 (2015). https://doi.org/10.1007/s12665-014-3696-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3696-5

Keywords