Skip to main content

Advertisement

Log in

Hydrological models of interflow in three Iberian mountain basins

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Interflow is the shallow sub-horizontal water flow through the saturated/unsaturated zone generally of a short transit time. It is the main component of the water balance in mountain regions. The study of interflow requires the development of appropriate conceptual models. Its quantification involves challenges due to: (1) the lack of methods to detect and measure it; (2) the possibility of mistaking interflow with local short-time groundwater flow. Therefore, the estimation of interflow is subjected to uncertainties, which in turn lead to errors in the evaluation of other hydrological components. A physically based semi-empirical model of interflow is presented here. It has been implemented in the water balance codes VISUAL-BALAN and GIS-BALAN and tested in three Iberian mountain basins: (1) the Valiñas river basin in the NW of Spain; (2) the Bernesga basin in the North of Spain; and (3) the Zêzere river basin at the Serra da Estrela in central Portugal. Model results show that the mean annual interflow in these mountain basins ranges from 34 to 55 % of the annual precipitation. These basins share the following features, which favour interflow: steep slopes and low-permeability layers in the soil. It can be concluded from this study that the evaluation of groundwater resources in mountain basins requires the proper estimation of interflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aureli A (2002) What’s ahead in UNESCO’s International Hydrological Programme (IHP VI 2002–2007). Hydrogeol J 10:349–350. doi:10.1007/s10040-002-0211-y

    Article  Google Scholar 

  • Bandyopadhyay J, Rodda JC, Kattelmann R, Kundzewicz ZW, Kraemer D (1997) Highland waters: a resource of global significance. In: Messerli B, Ives J (eds) Mountains of the world: a global priority. The Parthenon Publishing Group Inc, New York

    Google Scholar 

  • Becker A (2005) Runoff processes in mountain headwater catchments: recent understanding and research challenges. In: Huber UM, Bugmann HKM, Reasoner MA (Eds.), Global change and mountain regions: an overview of current knowledge. Series: Advances in Global Change Research, Vol 23, pp 283-295, doi 10.1007/1-4020-3508-X_29

  • Becker A, McDonnell JJ (1998) Topographical and ecological controls of runoff generation and lateral flows in mountain catchments. Int Assoc Hydrol Sci, IAHS Publ 248:199–206

    Google Scholar 

  • Beven KJ (1989) Changing ideas in hydrology: the case of physically based models. J Hydrol 105:157–172

    Article  Google Scholar 

  • Burnash R (1995) The NWS river forecast system—catchment modeling. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Littleton, Colorado, pp 311–366

    Google Scholar 

  • Carreira PM, Marques JM, Espinha Marques J, Chaminé HI, Fonseca PE, Monteiro Santos F, Moura RM, Carvalho JM (2011) Defining the dynamics of groundwater in Serra da Estrela Mountain area, central Portugal: an isotopic and hydrogeochemical approach. Hydrogeol J 19:117–131. doi:10.1007/s10040-010-0675-0

    Article  Google Scholar 

  • Carvalho JM, Espinha Marques J, Afonso MJ, Chaminé HI (2007) Prospecção e pesquisa de recursos hidrominerais e de água de nascente no Maciço Antigo Português. [survey and research of the spring and mineral water resources of the Portuguese Old Massif, in Portuguese]. Boletim de Minas, Lisboa 42:161–196

    Google Scholar 

  • Castañeda C, García-Vera MA (2008) Water balance in the playa-lakes of an arid environment, Monegros, NE Spain. Hydrogeol J 16:87–102

    Article  Google Scholar 

  • Crawford NA, Linsey RK (1966) Digital simulation in hydrology. The Stanford watershed simulation model IV. Technical Report 39, Department of Civil Engineering, Stanford University

  • Dewandel B, Lachassagne P, Wyns R, Maréchal JC, Krishnamurthy NS (2006) A generalized 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J Hydrol 330:260–284

    Article  Google Scholar 

  • DHI (Danish Hydraulic Institute) (2004) MIKE SHE reference guide, version 2003b. DHI Water & Environment. Hørsholm, Denmark. 383 pp

  • Dunne T, Black RD (1970) An experimental investigation of runoff production in permeable soils, Water Resour. Res. 62:179–191

    Google Scholar 

  • Eckhardt K, Haverkamp S, Fohrer N, Frede H-G (2002) SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Phys Chem Earth, Parts A/B/C 27(9-10):641–644

    Article  Google Scholar 

  • EEA, European Environment Agency (2010) Europe’s ecological backbone: recognising the true value of our mountains. EEA Report No 6/2010, Copenhagen, 248p, doi: 10.2800/43450

  • Espinha Marques JM (2007) Contribuição para o conhecimento da hidrogeologia da região do Parque Natural da Serra da Estrela (Sector de Manteigas: Nave de Santo António: Torre) [Contribution to the knowledge of the hydrogeology of the Serra da Estrela National Park (Sector of Manteigas-Nave de Santo António-Tower), in Portuguese], PhD Dissertation. Universidade do Porto, Faculdade de Ciências, 466 p

  • Espinha Marques J, Samper J, Pisani B, Alvares D, Vieira GT, Mora C, Carvalho JM, Chaminé HI, Marques JM, Sodré Borges F (2006) Avaliação de recursos hídricos através de modelação hidrológica: aplicação do programa VISUAL BALAN v2.0 a uma bacia hidrográfica na Serra da Estrela, Centro de Portugal [Water resources assessment by means of hydrological modelling: application of the Visual Balan v2.0 to a catchment in Serra da Estrela, Central Portugal [in Portuguese]. Cadernos Lab Xeol Laxe 31:86–106

    Google Scholar 

  • Espinha Marques J, Duarte JM, Constantino AT, Martins AA, Aguiar C, Rocha FT, Inácio M, Marques JM, Chaminé HI, Teixeira J, Samper J, Borges FS, Carvalho JM (2007) Vadose zone characterisation of a hydrogeologic system in a mountain region: Serra da Estrela case study (Central Portugal). In: Chery L and Marsily Gh de (eds) Aquifer systems management: Darcy’s legacy in a World of impending water shortage. Selected papers on Hydrogeology, IAH 10, 207–221

  • Espinha Marques J, Samper J, Pisani B, Alvares D, Carvalho JM, Chaminé HI, Marques JM, Sodré Borges FS (2009) Assessment of water resources in a mountain environment applying a semi-distributed hydrological model: Serra da Estrela case, Central Portugal. In: IX Jornadas de Estudios en la Zona No Saturada, ZNS’09, vol IX, pp 514–521

  • Espinha Marques J, Samper J, Pisani B, Alvares D, Carvalho JM, Chaminé HI, Marques JM, Vieira GT, Mora C, Sodré Borges F (2011) Evaluation of water resources in a high-mountain basin in Serra da Estrela, Central Portugal, using a semi-distributed hydrological model. Environ Earth Sci 62(6):1219–1234. doi:10.1007/s12665-010-0610-7

    Article  Google Scholar 

  • Espinha Marques J, Marques J, Chaminé HI, Carreira PM, Fonseca PE, Monteiro Santos FA, Moura R, Samper J, Pisani B, Teixeira J, Martins Carvalho J, Rocha F, Borges FS (2013) Conceptualizing a mountain hydrogeologic system by using an integrated groundwater assessment (Serra da Estrela, Central Portugal): a review. Geosci J 17(3):371–386. doi:10.1007/s12303-013-0019-x

    Article  Google Scholar 

  • Fetter CW (2001) Applied hydrogeology. Prentice Hall, New Jersey

    Google Scholar 

  • Fitts CR (2002) Groundwater science. Academic Press, London

    Google Scholar 

  • Flügel WA, Smith R (1999) Integrated process studies and modelling simulations of hillslope hydrology and interflow dynamics using the HILLS-Model. Environ Modell Softw 14:153–160

    Article  Google Scholar 

  • Fu C, Chen J, Dong L, Jiang H (2012) Field investigation and modeling of runoff generation in a granitic catchment in Zhuhai, China. J Hydrol 458–459:87–102. doi:10.1016/j.jhydrol.2012.06.038

    Article  Google Scholar 

  • Green WH, Ampt GA (1911) Studies on soil physics, part I, the flow of air and water through soils. J Agric Sci 4(1):1–24

    Article  Google Scholar 

  • Gurtz J, Zappa M, Jasper K, Lang H, Verbunt M, Badoux A, Vitvar T (2003) A comparative study in modelling runoff and its components in two mountainous catchments. Hydrol Process 17(2):297–311. doi:10.1002/hyp.1125

    Article  Google Scholar 

  • Hardie MA, Doyle RB, Cotching WE, and Lisson S (2012) Subsurface lateral flow in texture-contrast (Duplex) soils and catchments with shallow bedrock. Appl Environ Soil Sci Vol 2012, 10 pp. doi:10.1155/2012/861358

  • Hewlett JD (1961) Soil moisture as a source of base flow from steep mountain watersheds. USDA, SE Forest Experimental Station Paper N 132, 10 pp

  • Hewlett JD, Hibbert AR (1963) Moisture and energy conditions within a sloping mass during drainage. J Geophys Res 68:1081–1087

    Article  Google Scholar 

  • Hsieh PA (1998) Scale effects in fluid flow through fractured geologic media. In: Sposito G (ed) Scale dependence and scale invariance in hydrology. Cambridge University Press, Cambridge, pp 335–353

    Chapter  Google Scholar 

  • Kirkby MJ (1978) Hillslope hydrology. Wiley, New York 389 pp

    Google Scholar 

  • Leap DI (1999) Geological occurrence of groundwater. In: Delleur JW (ed) The handbook of groundwater engineering. CRC Press, Boca Raton, p 969

    Google Scholar 

  • Lombardero M, Sepúlveda S (2009) Cale del túnel Oeste de Pajares (Drilling of the western Pajares tunnel [in Spanish]). Revista de la Ingeniería y consultoría del transporte. The summary of the September 2009 issue is available at the following link: http://www.cit.gva.es/cast/informacion-general/doc-y-publicaciones/boletin-sumarios0/listadoordenalfabe/itransporte-revista-de-la-ingenieria-y-consultoria-del-transporte/

  • Míguez R (2005) Los Túneles de Pajares (The Pajares tunnels [in Spanish]). Revista de Obras Públicas N 3:460

    Google Scholar 

  • O’Brien RJ, Misstear BD, Gill LW, Johnston PM, Flynn R (2013) Quantifying flows along hydrological pathways by applying a new filtering algorithm in conjunction with master recession curve analysis. Hydrol Process. doi:10.1002/hyp.10105

    Google Scholar 

  • Oliveira JT, Pereira E, Ramalho M, Antunes MT, Monteiro JH [Coords.] (1992) Carta Geológica de Portugal à escala 1/500 000 [Geological Map of Portugal at the scale 1/50000, in Portuguese], 5th edn. Serviços Geológicos de Portugal, Lisbon

  • Philip JR (1957) The theory of infiltration. 1. The infiltration equation and its solution. Soil Sci 83:345–357

    Article  Google Scholar 

  • Pisani B (2008) Acoplamiento de modelos hidrológicos semidistribuidos y GIS (Coupling semi-distributed hydrological models and GIS [in Spanish]). PhD Dissertation, University of A Coruña

  • Pisani B, Samper J, Li Y (2013) Estimación de los efectos del cambio climático en la recarga de los acuíferos de la Plana de La Galera y del aluvial del Ebro en Tortosa mediante modelos hidrológicos de balance de agua (Assessment of the effects of climate change on groundwater recharge in the Galera Plain and Ebre alluvial aquifers in Spain by means of hydrological water balance models [in Spanish]). Boletín Geológico y Minero 124(4):535–549

    Google Scholar 

  • Raposo JR, Molinero J, Dafonte J (2012) Parameterization and quantification of recharge in crystalline fractured bedrocks in Galicia-Costa (NW Spain). Hydrol Earth Syst Sc 16:1667–1683

    Article  Google Scholar 

  • Ribeiro A, Munhá J, Dias R, Mateus A, Pereira E, Ribeiro L, Fonseca PE, Araújo A, Oliveira JT, Romaõ J, Chaminé HI, Coke C, Pedro J (2007) Geodynamic evolution of the SW Europe Variscides. Tectonics 26(TC6009):1–24. doi:10.1029/2006TC002058

    Google Scholar 

  • Samper J (1998) Evaluación de la recarga por la lluvia mediante balances de agua: Utilización, Calibración e Incertidumbres, Boletín Geológico y Minero [Evaluation of recharge from precipitation by means of water balance: Use, calibration and uncertainties, In Spanish]. Vol. 109-4, pp. 31–54

  • Samper J, Carrera J (1995) Numerical modelling of remedial actions for an uranium mill tailings in Spain: from model construction to prediction uncertainty. In: Kovar J, Kransky J (eds) Groundwater quality: remediation and protection. IAHS, vol 225., pp 299–310

    Google Scholar 

  • Samper J, B Pisani (2009) Aquifer recharge evaluation by a combination of soil water balance and groundwater flow models. In: IX Jornadas de Estudios en la Zona No Saturada, ZNS’09, vol IX, pp 462–469. ISBN 978-84-96736-83-2

  • Samper J, Huguet Ll, Ares J, García Vera MA (1999) Manual del usuario del programa VISUAL BALAN v1.0: código interactivo para la realización de balances hidrológicos y la estimación de la recarga (User manual of the program VISUAL BALAN v1.0: a user-friendly code to compute water balances and assess the aquifer recharge [in Spanish]). ENRESA (05/99). Madrid. 134 pp

  • Samper J, García Vera MA, Pisani B, Varela A, Losada JA, Alvares D, Espinha Marques J (2007) Using hydrological models and Geographic Information Systems for water resources evaluation: GIS-VISUAL-BALAN and its application to Atlantic basins in Spain (Valiñas) and Portugal (Serra da Estrela). In: Lobo Ferreira JP and Vieira JMP (eds) Water in Celtic Countries: Quantity, Quality and Climate Variability. IAHS 310: 259–266

  • Shapiro AM (2001) Effective matrix diffusion in kilometer-scale transport in fractured crystalline rock. Water Resour Res 37(3):507–522

    Article  Google Scholar 

  • Skaggs RW (1986) Drainage modeling in research and design. In, Saavalainen J and Vakkilainen P (eds.), Proc. of International Seminar on Land Drainage, July 9–11, 1986, Helsinki, Finland: 153–180

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67. doi:10.1007/s10040-001-0170-8

    Article  Google Scholar 

  • Stigter TY, Nunes JP, Pisani B, Fakir Y, Hugman R, Li Y, Tomé S, Ribeiro L, Samper J, Oliveira R, Monteiro JP, Silva A, Tavares PCF, Shapouri M, Cancela da Fonseca L, El Himer H (2012) Comparative assessment of climate change impacts on coastal groundwater resources and dependent ecosystems in the Mediterranean. Reg Environ Change. doi:10.1007/s10113-012-0377-3

    Google Scholar 

  • Viviroli D, Weingartner R (2004) The hydrological significance of mountains: from regional to global scale. Hydrol Earth Syst Sci 8:1017–1030. doi:10.5194/hess-8-1017-2004

    Article  Google Scholar 

  • Viviroli D, Weingartner R (2008) “Water towers”: a global view of the hydrological importance of mountains. In: E. Wiegandt (Ed.) Mountains: Sources of Water, Sources of Knowledge. Adv Glob Change Res 31:15–20

  • Ward RC, Robinson M (1990) Principles of Hydrology, 3rd edn. McGraw-Hill, England

    Google Scholar 

  • Wu Y, Xu Y (2005) Snow impact on groundwater recharge in table mountain group aquifer systems with a case study of the Kommissiekraal River catchment South Africa. Water SA 31:275–282

    Google Scholar 

  • Wyns R, Baltassat JM, Lachassagne P, Legchenko A, Vairon J, Mathieu F (2004) Application of SNMR soundings for groundwater reserves mapping in weathered basement rocks (Brittany, France). Bull Soc Géol Fr 175:21–34

    Article  Google Scholar 

  • Xu Q, Chen J, Peart M (2013) An enhanced Topmodel for a headwater catchment in Hong Kong. In EGU Gen Assem Conf Abstr 15:4690

    Google Scholar 

  • Yu C, Zheng C (2010) HYDRUS: Software for flow and transport modeling in variably saturated media. Softw Spotlight, Gr Water 48(6):787–791

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by projects funded by ENRESA, the Ebre River Authority (Project 2000-PH17-I), the Spanish Ministry of Economy and Competitiveness (Project CGL2012-36560), and Fund 2012/181 from “Consolidación e estruturación de unidades de investigación competitivas”, Grupos de referencia competitiva) Xunta de Galicia. The project PEst-OE/CTE/UI0039/2011/2012 (CGUP) provided support for the research dealing with the Zêzere River Basin. We acknowledge the support of the Fundación Universidad de A Coruña and the contributions of the people involved in the development of BALAN, VISUAL-BALAN and GIS-BALAN. The comments of an anonymous reviewer and of the Editor-in-Chief which improved the paper are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Samper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samper, J., Pisani, B. & Espinha Marques, J. Hydrological models of interflow in three Iberian mountain basins. Environ Earth Sci 73, 2645–2656 (2015). https://doi.org/10.1007/s12665-014-3676-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3676-9

Keywords

Navigation