Environmental Earth Sciences

, Volume 73, Issue 7, pp 3077–3094 | Cite as

A combined seismic and geoelectrical monitoring approach for CO2 storage using a synthetic field site

  • K. BenischEmail author
  • D. Köhn
  • S. al Hagrey
  • W. Rabbel
  • S. Bauer
Original Article


This paper presents an approach to assess the methods of 2D elastic seismic full waveform inversion (FWI) and electrical resistivity tomography (ERT) for monitoring storage of CO2 in deep saline formations. As at a real site the subsurface is not fully known, this approach uses a synthetic field site. Densities and saturations are obtained from a numerical simulation of the injection process and are introduced into geophysical forward models which simulate the geophysical data acquisition from the surface (FWI) and boreholes (ERT). These synthetic geophysical data are then evaluated with respect to changes in CO2 saturation and are compared to the fully known CO2 saturation of the numerical process model to verify the geophysical monitoring methods. Results show that both methods are capable of detecting a thin CO2 phase body in about 2,200 m depth for a synthetic site in the North German Basin. Inverted CO2 saturations are in good agreement, however, both methods cannot resolve the CO2 phase edges of less than 4 m saturated thickness. The maximum error of estimated CO2 saturation is 10 % for the FWI method and 15 % for the ERT method, if accurate baseline models are available. The FWI method sensitivity on the baseline model is tested by a sensitivity analysis demonstrating high sensitivity on bulk density, but low sensitivity on fluid densities and porosity. ERT results are considerably improved using structural information from the FWI as constraint.


CO2 storage monitoring Seismic full waveform inversion Electrical resistivity tomography Numerical modeling 



We thank D. De Nil for constructive and fruitful discussions and S. Siebrands for computer work. This study has been carried out within the framework of research projects “CO2Mopa” and “ANGUS+” funded mainly by the German Federal Ministry of Education and Research (BMBF), and partially by EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel.


  1. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Eng 146:54–62. doi: 10.2118/942054-G Google Scholar
  2. Arts R, Eiken O, Chadwick A, Zweigel P, van der Meer L, Zinszner B (2002a) Monitoring of CO2 injected at Sleipner using time-lapse seismic data. In: 6th International conference on Greenhouse Gas Control Technologies (GHGT-6), Kyoto, JapanGoogle Scholar
  3. Arts R, Elsayed R, van der Meer L, Eiken O, Ostmo S, Chadwick A, Kirby G, Zinszner B (2002b) Estimation of the mass of injected CO2 at Sleipner using time-lapse seismic data. In: EAGE 64th Conference and Exhibition, Florence, Italy, Expanded Abstracts, H016Google Scholar
  4. Arts R, Chadwick A, Eiken O, Zweigel P (2003) Interpretation of the 1999 and 2001 time-lapse seismic data (wp 5.4). SACS report, TNOGoogle Scholar
  5. Asnaashari A, Brossier R, Garambois S, Audebert F, Thore P, Virieux J (2013a) Regularized seismic full waveform inversion with prior model information. Geophysics 78(2):R25–R36CrossRefGoogle Scholar
  6. Asnaashari A, Brossier R, Garambois S, Audebert F, Virieux J (2013b) Target-oriented time-lapse imaging using FWI with prior model information, EAGE expanded abstracts. In: 75th EAGE Conference and Exhibition, London (U.K), We P07 06Google Scholar
  7. Baldschuhn R, Frisch U, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor—Strukturen, Strukturentwicklung, Paläogeographie. Geol. Jb., A 153, mit 3 CD ROMs, Hannover (BGR)Google Scholar
  8. Bauer S, Class H, Ebert M, Feeser V, Götze H, Holzheid A, Kolditz O, Rosenbaum S, Rabbel W, Schäfer D, Dahmke A (2012) Modeling, parameterization and evaluation of monitoring techniques for CO2 storage in deep saline formations: the CO2-MoPa project. Environ Earth Sci 67(2):351–367. doi: 10.1007/s12665-012-1707-y CrossRefGoogle Scholar
  9. Bauer S, Beyer C, Dethlefsen F, Dietrich P, Duttmann R, Ebert M, Feeser V, Görke U, Köber R, Kolditz O, Rabbel W, Schanz T, Schäfer D, Würdemann H, Dahmke A (2013) Impacts of the use of the geological subsurface for energy storage: an investigation concept. Environ Earth Sci 70(8):3935–3943. doi: 10.1007/s12665-013-2883-0 CrossRefGoogle Scholar
  10. Bear J (1988) Dynamics of fluids in porous media. Dover Publications, New York, p 674, ISBN:9780486656755Google Scholar
  11. Benisch K, Bauer S (2013) Short- and long-term regional pressure build-up during CO2 injection and its applicability for site monitoring. Int J Greenh Gas Control 19:220–233. doi: 10.1016/j.ijggc.2013.09.002 CrossRefGoogle Scholar
  12. Brossier R (2011) Two-dimensional frequency-domain visco-elastic full waveform inversion: parallel algorithms, optimization and performance. Comput Geosci 37:444–455CrossRefGoogle Scholar
  13. Brossier R, Operto S, Virieux J (2010) Which data residual norm for robust elastic frequency-domain full waveform inversion? Geophysics 75:37–46CrossRefGoogle Scholar
  14. Chadwick RA, Arts R, Eiken O (2005) 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. In: Dor´e A, Vining BA (eds) Petroleum geology: North-West Europe and global perspectives—Proceedings of the Sixth Petroleum Geology Conference, 1385–1399. Geological Society of LondonGoogle Scholar
  15. Chadwick RA, Noy D, Arts R, Eiken O (2009) Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development. Energy Procedia 1(1):2103–2110. doi: 10.1016/j.egypro.2009.01.274 (ISSN:1876-6102)CrossRefGoogle Scholar
  16. Choi Y, Min D-J, Shin C (2008) Two-dimensional waveform inversion of multi-component data in acoustic-elastic coupled media. Geophys Prospect 56:863–881CrossRefGoogle Scholar
  17. Claerbout JF, Muir F (1973) Robust modeling with erratic data. Geophysics 38:826–844CrossRefGoogle Scholar
  18. Denli H, Huang L (2009) Double-difference elastic waveform tomography in the time domain. In: SEG Technical Program Expanded Abstracts, pp 2302–2306Google Scholar
  19. Dethlefsen F, Ebert M, Dahmke A (2014) A geological database for parameterization in numerical modeling of subsurface storage in Northern Germany. Environ Earth Sci 71:2227–2244. doi: 10.1007/s12665-013-2627-1 CrossRefGoogle Scholar
  20. Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193(3–4):253–271. doi: 10.1016/S0009-2541(02)00263-2 Google Scholar
  21. Duveneck E (2004) Tomographic determination of seismic velocity models with kinematic wavefield attributes. PhD thesis, Karlsruhe University, Logos Verlag BerlinGoogle Scholar
  22. Eiken O, Brevik I, Arts R, Lindeberg E, Fagervik K (2000) Seismic monitoring of CO2 injected into a marine aquifer. SEG International Exposition and 70th Annual Meeting, Expanded Abstracts, RC-8.2Google Scholar
  23. Fichtner A (2011) Full seismic waveform modelling and inversion. Springer, Heidelberg, p 343CrossRefGoogle Scholar
  24. Gassmann F (1951) Über die Elastizität poröser Medien. Mitteilungen aus dem Institut für Geophysik an der Eidgenössischen Technischen Hochschule Zürch, Band 17, Kümmerly & Frey, pp 1–23Google Scholar
  25. Geluk MC, Röhling H-G (1999) High-resolution sequence stratigraphy of the lower Triassic Bundsandstein: a new tool for basin analysis. Zbl Geol Paläont Teil I 7–8:727–745Google Scholar
  26. Ghaderi A, Landrø M (2009) Estimation of thickness and velocity changes of injected carbon dioxide layers from prestack time-lapse seismic data. Geophysics 74(2):O17–O28CrossRefGoogle Scholar
  27. Hagrey SA al, Strahser M, Rabbel W (2013) Seismic and geoelectric modelling studies of parameters controlling CO2 geostorage in Saline Reservoirs. Int J Greenh Gas Control IJGGC-856, p 11, doi: 10.1016/j.ijggc.2013.01.041
  28. Hagrey SA al, Köhn D, Rabbel W (2014) Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs, Springer Plus. doi: 10.1186/2193-1801-3-267
  29. Hagrey SA (2011) CO2 Plume modeling in deep saline reservoirs by 2D ERT in boreholes. Lead Edge 30(1):24–33CrossRefGoogle Scholar
  30. Hagrey SA (2012a) 2D model study of CO2 Plumes in Saline Reservoirs by Borehole Resistivity Tomography. Int J Geophys, vol 2011, p 12 (Article ID 805059). doi: 10.1155/2011/805059
  31. Hagrey SA (2012b) 2D optimized electrode arrays for borehole resistivity tomography and CO2 sequestration modelling. Pure appl Geophys 169(7):1283–1292. doi: 10.1007/s00024-011-0369-0 CrossRefGoogle Scholar
  32. Hagrey SA (2012c) Geophysical imaging techniques. In: Mancuso S (ed) Measuring roots—an update approach, Springer-Verlag, Heidelberg, Chapter 10, pp 151–188. doi: 10.1007/978-3-642-22067-8_10
  33. Hannis S (2010) Monitoring technologies used at some geological CO2 storage sites. In: Innovation for sustainable production (i-SUP) conference proceedings, Bruges, April 18–21 2010Google Scholar
  34. Hese F (2012) 3D Modellierungen und Visualisierung von Untergrundstrukturen für die Nutzung des unterirdischen Raumes in Schleswig-Holstein. Ph.D. thesis, University of Kiel, Kiel, p 156Google Scholar
  35. Holberg O (1987) Computational aspects of the choice of operator and sampling interval for numerical differentiation in large-scale simulation of wave phenomena. Geophys Prospect 35:629–655CrossRefGoogle Scholar
  36. Hoversten GM, Myer LR (2000) Monitoring of CO2 sequestration using integrated geophysical and reservoir data. In: Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies, CSIRO, Collingwood, Victoria, Australia, pp 305–310Google Scholar
  37. Keller GV, Frischknecht FC (1966) Electrical methods in geophysical prospecting. Pergamon, LondonGoogle Scholar
  38. Kiessling D, Schmidt-Hattenberger C, Schuett H, Schilling F, Krueger K, Schoebel B, Danckwardt E, Kummerow J, the CO2SINK Group (2010) Geoelectrical techniques for monitoring geological CO2 storage: first results from crosshole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). Int J Greenh Gas Control 4:816–826CrossRefGoogle Scholar
  39. Köhn D (2011) Time domain 2D elastic full waveform tomography, PhD Thesis, Kiel University. Accessed 12/12/2013
  40. Köhn D, De Nil D, Kurzmann A, Przebindowska A, Bohlen T (2012) On the influence of model parameterization in elastic full waveform tomography. Geophys J Int 191:325–345CrossRefGoogle Scholar
  41. Komatitsch D, Martin R (2007) An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72(5):SM155–SM167Google Scholar
  42. Levander A (1988) Fourth order finite-difference P-SV seismograms. Geophysics 53(11):1425–1436CrossRefGoogle Scholar
  43. Li D, Graupner B, Bauer S (2011) A method for calculating the liquid density for the CO2–H2O–NaCl system under CO2 storage condition. Energy Procedia 4:3817–3824 (ISSN1876-6102). doi: 10.1016/j.egypro.2011.02.317
  44. Li D, Bauer S, Benisch K, Graupner B, Beyer C (2014) OpenGeoSys-ChemApp a coupled simulator for reactive transport in multiphase systems—code development and application at a representative CO2 storage formation in Northern Germany. Acta Geotech 9:67–79. doi: 10.1007/s11440-013-0234-7 CrossRefGoogle Scholar
  45. Loke MH, Dahlin T (2002) A comparison of the Gauss-Newton and quasi-Newton techniques in resistivity imaging inversion. J Appl Geophys 49:149–162CrossRefGoogle Scholar
  46. Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion techniques in 2D electrical imaging surveys. Explor Geophys 34:182–187CrossRefGoogle Scholar
  47. Loke MH, Wilkinson PB, Chambers JE (2010) Fast computation of optimized electrode arrays for 2D resistivity surveys. Comput Geosci 36:1414–1426CrossRefGoogle Scholar
  48. Loke MH, Chambers JE, Rucker DF, Kuras O, Wilkinson PB (2013) Recent developments in the direct-current geoelectrical imaging technique. J Appl Geophys (in press). doi: 10.1016/j.jappgeo.2013.02.017
  49. Lüth S, Bergmann P, Cosma C, Enescu N, Giese R, Götz J, Ivanova A, Juhlin C, Kashubin A, Yang C, Zhang F (2011) Time-lapse seismic surface and down-hole measurements for monitoring CO2 storage in the CO2SINK project (Ketzin, Germany). Energy Procedia 4:3435–3442CrossRefGoogle Scholar
  50. Magri F, Bayer U, Pekdeger A, Otto R, Thomsen C, Maiwald U (2009) Salty groundwater flow in the shallow and deep aquifer systems of the Schleswig-Holstein area (North German Basin). Tectonophysics 470(1–2):183–194CrossRefGoogle Scholar
  51. Mann J (2002) Extensions and applications of the common-reflection-surface stack method. PhD thesis, Karlsruhe University, Logos Verlag, BerlinGoogle Scholar
  52. Martens S, Liebscher A, Möller F, Henninges J, Kempka T, Lüth S, Norden B, Prevedel B, Szizybalski A, Zimmer M, Kühn M, the Ketzin Group (2013) CO2 storage at the Ketzin pilot site, Germany: fourth year of injection, monitoring, modelling and verification. Energy Procedia 37:6434–6443. doi: 10.1016/j.egypro.2013.06.573 CrossRefGoogle Scholar
  53. Mathieson A, Midgely J, Wright I, Saoula N, Ringrose P (2011) In Salah CO2 Storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Energy Procedia 4:3596–3603. doi: 10.1016/j.egypro.2011.02.289 CrossRefGoogle Scholar
  54. Maurer HR, Greenhalgh SA, Manukyan E, Marelli S, Green AG (2012) Receiver coupling effects in seismic waveform inversions. Geophysics 77(1):R57–R63CrossRefGoogle Scholar
  55. Meadows M (2008) Time-lapse seismic modelling and inversion of CO2 saturation for storage and enhanced oil recovery. Lead Edge 27:506–516CrossRefGoogle Scholar
  56. Metz B, Davidson O, de Coninck H, Loos M, Meyer L (2005) Carbon dioxide capture and storage. IPCC Spec. Rep. Cambridge University Press, CambridgeGoogle Scholar
  57. Mitiku AB, Bauer S (2013) Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin. Environ Earth Sci 70(8):3661–3673. doi: 10.1007/s12665-013-2580-z CrossRefGoogle Scholar
  58. Mitiku AB, Li D, Bauer S, Beyer C (2013) Geochemical modelling of CO2 interaction with water and rock formation and assessment of its impact referring to Northern Germany Sedimentary Basin. Appl Geochem. doi: 10.1016/j.apgeochem.2013.06.008
  59. Mora P (1987) Nonlinear two-dimensional elastic inversion of multi offset seismic data. Geophysics 52:1211–1228CrossRefGoogle Scholar
  60. Nakatsuka Y, Xue Z, Garcia H, Matsuoka T (2010) Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements. Int J Greenh Gas Control 4:209–216CrossRefGoogle Scholar
  61. Nocedal J, Wright SJ (2006) Numerical Optimization. Springer, New YorkGoogle Scholar
  62. Noel M, Xu B (1991) Archaeological investigation by electrical resistivity tomography: a preliminary study. Geophys J Int 107:95–102CrossRefGoogle Scholar
  63. Pratt RG, Gao F, Zelt C, Levander A (2002) A comparison of ray-based and waveform tomography—implications for migration. In: 64th Conference of the European Association of Geoscientists and Engineers, Florence, Paper B023Google Scholar
  64. Queisser M, Singh SC (2012) Full waveform inversion in the time lapse mode applied to CO2 storage at Sleipner. Geophys Prospect 61:537–555CrossRefGoogle Scholar
  65. Queisser M, Singh SC (2013) Localizing CO2 at Sleipner—Seismic images versus P-wave velocities from waveform inversion. Geophysics 78:131–146CrossRefGoogle Scholar
  66. Ramirez AL, Nitao JJ, Hanley WG, Aines R, Glaser RE, Sengupta SK, Dyer KM, Hickling TL, Daily WD (2005) Stochastic inversion of electrical resistivity changes using a Markov Chain Monte Carlo approach. J Geophys Res 110:B02101. doi: 10.1029/2004JB003449 CrossRefGoogle Scholar
  67. Röhling HG (1999) The quickborn sandstone—a new lithostratigraphic unit in the lowermost Middle Buntsandstein (Scythian). Zbl. Geol. Paläont. Teil I, 1998(7–8): 797–812 (Stuttgart)Google Scholar
  68. Schlumberger (1985) Schlumberger log interpretation charts. Schlumberger Well Services, Schlumberger Limited, New YorkGoogle Scholar
  69. Schlumberger (2012) Eclipse 100 Technical Description and User ManualGoogle Scholar
  70. Shin C, Cha YH (2008) Waveform inversion in the Laplace domain. Geophys J Int 173(3):922–931CrossRefGoogle Scholar
  71. Shin C, Ha W (2008) A comparison between the behavior of objective functions for waveform inversion in the frequency and laplace domains. Geophysics 73(5):VE119–VE133Google Scholar
  72. Shipp RM, Singh SC (2002) Two-dimensional full wavefield inversion of wide-aperture marine seismic streamer data. Geophys J Int 151:325–344CrossRefGoogle Scholar
  73. Sirgue L (2003) Inversion de la forme d’on dedans le domaine fréquentiel de donnéessismiques grand offset. Thèse de doctorat, Université Paris 11, France—Queen’s University, CanadaGoogle Scholar
  74. Sirgue L, Barkved OI, Dellinger J, Etgen J, Albertin U, Kommedal JH (2010) Full waveform inversion: the next leap forward in imaging at Valhall. First Break 28:65–70CrossRefGoogle Scholar
  75. Smith T, Hoversten M, Gasperikova E, Morrison F (1999) Sharp boundary inversion of 2D magnetotelluric data. Geophys Prospect 47:469–486CrossRefGoogle Scholar
  76. Stummer P, Maurer H, Green AG (2004) Experimental design: electrical resistivity data sets that provide optimum subsurface information. Geophysics 69:120–139CrossRefGoogle Scholar
  77. Tarantola A (1984) Inversion of seismic reflection data in the acoustic approximation. Geophysics 49(8):1259–1266CrossRefGoogle Scholar
  78. Tarantola A (1986) A strategy for non-linear inversion of seismic reflection data. Geophysics 51(10):1893–1903CrossRefGoogle Scholar
  79. Tarantola A (1987) Inverse problem theory: techniques for data fitting and model parameter estimation. Elsevier, New YorkGoogle Scholar
  80. Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4):889–901CrossRefGoogle Scholar
  81. Wenske I, Mispel J, Köhn D (2011) 2D Joint full waveform inversion of elastic surface and VSP seismic data in time domain. In: 73rd Conference of the European Association of Geoscientists and Engineers, ViennaGoogle Scholar
  82. Wilkinson PB, Meldrum PI, Chambers JE, Kuras O, Ogilvy RD (2006) Improved strategies for the automatic selection of optimised sets of electrical resistivity tomography measurement configurations. Geophys J Int 167:1119–1126CrossRefGoogle Scholar
  83. Winthaegen P, Arts R, Schroot B (2005) Monitoring subsurface CO2 storage. Oil Gas Sci Technol—Rev IFP 60(3):573–582Google Scholar
  84. Xue Z, Kim J, Mito S, Kitamura K, Matsuoka T (2009) Detecting and monitoring CO2 with P-wave velocity and resistivity from both laboratory and field scales. Soc Pet Eng 126885:6pGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • K. Benisch
    • 1
    Email author
  • D. Köhn
    • 1
  • S. al Hagrey
    • 1
  • W. Rabbel
    • 1
  • S. Bauer
    • 1
  1. 1.Institute of GeosciencesChristian-Albrechts-University KielKielGermany

Personalised recommendations