Skip to main content

Advertisement

Log in

Multiobjective parameter estimation of hydraulic properties for a sandy soil in Oman

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The estimation of soil hydraulic parameters for the description of the highly non-linear hydraulic conductivity and water retention curve is of crucial importance for numerical modeling of water and solute transport in the vadose zone. Soil cores have been taken from different depths of a sandy soil of an agricultural field site located in the Batinah region of the Sultanate of Oman and subjected to a comprehensive laboratory analysis, comprising simplified multistep outflow experiments without the use of microtensiometers, additional retention measurements with the pressure plate apparatus and particle size analysis. The measured retention curve and the dynamic cumulated outflow time series—characterizing the hydraulic conductivity curve—are used to estimate the soil hydraulic parameters of the Mualem-van Genuchten (MvG) soil model. Multiobjective parameter optimization runs were performed by coupling the HYDRUS-1D model with the AMALGAM algorithm to allow an enhanced diagnostics of the soil and model behavior by analyzing the trade-offs between two objectives. Furthermore, two different formulations of the MvG model were investigated regarding their ability to reproduce the measurements: (1) P1—with fixed shape parameter \(\tau\) and (2) P2—considering the shape parameter \(\tau\) as an additional fitting parameter. The estimated parameters for the investigated soil profile exhibit a considerable degree of heterogeneity with saturated hydraulic conductivities varying by three orders of magnitude within the soil profile. The multiobjective analysis showed that considerable trade-offs exist between the two objectives for some of the soil cores, indicating that the fit to the cumulated outfow data can be increased on the cost of the fit to the water retention. However, satisfying fits to both objectives simultaneously were achieved for both formulations of the MvG model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdelrahman H, Lepiece A, Macalinga V (1993) Soome physical and chemical characteristics of the batinah soils. Commun Soil Sci Plant Anal 24(17&18):2293–2305

    Article  Google Scholar 

  • Assouline S, Or D (2013) Conceptual and parametric representation of soil hydraulic properties: a review. Vadose Zone J 12(4):1–20

    Article  Google Scholar 

  • Beven K (2006) A manifesto for the equafinality thesis. J Hydrol 320:18–36

    Article  Google Scholar 

  • Bitterlich S, Durner W, Iden SC, Knabner P (2004) Inverse estimation of the unsaturated soil hydraulic properties from column outflow experiments using free-form parameterizations. Vadose 3:971–981

    Article  Google Scholar 

  • Celia MA, Bouloutas ET, Zarba RL (1990) A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour Res 26(7):1483–1496. doi:10.1029/WR026i007p01483

    Article  Google Scholar 

  • Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. Evol Comput IEEE Trans 6(2):182–197. doi:10.1109/4235.996017

    Article  Google Scholar 

  • Diamantopoulos E, Durner W (2012) Dynamic nonequilibrium of water flow in porous media: A review. Vadose Zone J 11(3). doi:10.2136/vzj2011.0197

  • Diamantopoulos E, Iden SC, Durner W (2012) Inverse modeling of dynamic nonequilibrium in water flow with an effective approach, Water Resour Res, 48(3):W03503. doi:10.1029/2011WR010717.

  • Dorsey JD, Ward AD, Fausey NR, Bair E (1992) A comparison of four field methods for measuring saturated hydraulic conductivity. Trans Am Soc Agric Eng 33:1925–1931

    Article  Google Scholar 

  • Durner W, Iden SC (2011) Extended multistep outflow method for the accurate determination of soil hydraulic properties near water saturation, Water Resour Res 47(8):W08526. doi:10.1029/2011WR010632

  • Eching SO, Hopmans JW (1993) Optimization of hydraulic functions from transient outflow and soil water pressure data. Soil Sci Soc Am J 57(5):1167–1175

    Article  Google Scholar 

  • Eching SO, Hopmans JW, Wendroth O (1994) Unsaturated hydraulic conductivity from transient multistep outflow and soil water pressure data. Soil Sci Soc Am J 58(3):687–695

    Article  Google Scholar 

  • Efstratiadis A, Koutsoyiannis D (2010) One decade of multi-objective calibration approaches in hydrological modelling: a review. Hydrol S 55:58–78

    Article  Google Scholar 

  • English M (1990) Deficit irrigation: 1. analytical framework. J Irrig Drain Eng 116(3):399–412

    Article  Google Scholar 

  • Gardner WR (1956) Calculation of capillary conductivity from pressure plate outflow data1. Soil Sci Soc Am J 20(3):317–320

    Article  Google Scholar 

  • Grundmann J, Schütze N, Schmitz GH, Al-Shaqsi S (2012) Towards an integrated arid zone water management using simulation based optimisation. Environ Earth Sci 65(5):1381–1394

    Article  Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1998) Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information. Water Resour Res 34(4):751–763. doi:10.1029/97WR03495

    Article  Google Scholar 

  • Gupta SC, Farrell DA, Larson WE (1974) Determining effective soil water diffusivities from one-step outflow experiments1. Soil Sci Soc Am J 38(5):710–716

    Article  Google Scholar 

  • Haario H, Saksman E, Tamminen J (2001) An adaptive metropolis algorithm. Bernoulli 7(2):223–242

    Article  Google Scholar 

  • Hopmanns JW, Vogel T, Koblik PD (1992) X-ray tomography of soil water distribution in one-step outflow experiments. Soil Sci Soc Am J 56:355–362

    Article  Google Scholar 

  • Hughes EJ (2008) Multiobjective problem solving from nature: from concepts to applications, part IV: scaling up multiobjective optimization: "fitness assignment methods for many-objective problems". Springer, Berlin Heidelberg

    Google Scholar 

  • Hunt AG, Ewing RP, Horton R (2013) What’s wrong with soil physics? Soil Sci Soc Am J 77:1877–1887

    Article  Google Scholar 

  • Iden SC, Durner W (2007) Free-form estimation of the unsaturated soil hydraulic properties by inverse modeling using global optimization, Water Resour Res, 43(7), n/a-n/a. doi:10.1029/2006WR005845

  • Jarvis NJ (2007) A review of non-equilibrium water flow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546

    Article  Google Scholar 

  • Kennedy J, Eberhardt RC, Shi Y (2001) Swarm Intelligence, Morgan Kaufmann, San Francisco

  • Kloss S, Grundmann J, Schütze N, Werisch S, Trümmer J, Schmidthalter U (this Issue), Investigation of optimal deficit irrigation strategies combining svat-modeling and experiments., Environ Earth Sci, this issue, XX–XX.

  • Krauße T, Cullmann J, Saile P, Schmitz GH (2012) Robust multi-objective calibration strategies - possibilities for improving flood forecasting. Hydrol Earth Syst Sci 16:3579–3606

    Article  Google Scholar 

  • Laloy E, Weynants M, Bielders CL, Vanclooster M, Javaux M (2010) How efficient are one-dimensional models to reproduce the hydrodynamic behavior of structured soils subjected to multi-step outflow experiments? J Hydrol 393:37–52

    Article  Google Scholar 

  • MAF (1993) South batinah integrated study, volume 2: Land resources, Tech. rep., Ministry of Agriculture and Fisheries, Sultanate of Oman.

  • Mohanty BP, Kanwar RS, Everts CJ (1994) Comparison of saturated hydraulic conductivity measurement for a glacial-till soil. Soil Sci Soc Am J 58:672–677

    Article  Google Scholar 

  • Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12(3):513–522. doi:10.1029/WR012i003p00513

    Article  Google Scholar 

  • Nasta P, Huynh S, Hopmans JW (2011) Simplified multistep outflow method to estimate unsaturated hydraulic functions for coarse-textured soils. Soil Sci Soc Am J 75(2):418–425

    Article  Google Scholar 

  • Nielsen DR, van Genuchten MT, Biggar JW (1986) Water flow and solute transport processes in the unsaturated zone. Water Resour Res 22:895–1085

    Google Scholar 

  • Peters A, Durner W, Wessolek G (2011) Consistent parameter constraints for soil hydraulic functions. Adv Water Resour 34:1352–1365

    Article  Google Scholar 

  • Reed P, Hadka D, Herman J, Kasprzyk J, Kollat J (2013) Evolutionary multiobjective optimization in water resources: the past, present, and future, Adv Water Resour 51(0):438–456. doi:10.1016/j.advwatres.2012.01.005,ce:title 35th Year Anniversary Issue/ce:title

  • Schelle H, Iden S, Peters A, Durner W (2010) Analysis of the agreement of soil hydraulic properties obtained from multistep-outflow and evaporation methods. Vadose Zone J 9:1080–1091

    Article  Google Scholar 

  • Schelle H, Iden SC, Durner W (2011) Combined transient method for determining soil hydraulic properties in a wide pressure head range. Soil Sci Soc Am J 75(5):1681–1693

    Article  Google Scholar 

  • Schoups G, Hopmanns J, Young CA, Vrugt JA, Wallander WW (2005) Multi-criteria optimization of a regional spatially-distributed subsurface water flow model. J Hydrol 311:20–48

    Article  Google Scholar 

  • Schütze N, Schmitz GH (2010) Occasion: a new planning tool for optimal climate change adaption strategies in irrigation. J Irrig Drain Eng 136(12):836–846

    Article  Google Scholar 

  • Šim\(\dot{\rm u }\)nek J, van Genuchten MT, Gribb MM, Hopmanns JW (1998) Parameter estimation of unsaturated soil hydraulic properties from transient flow processes. Soil Tillage Res 47:27–36

    Article  Google Scholar 

  • Šim\(\dot{\rm u }\)nek J, Šejna M, Saito H, Sakai M, van Genuchten MT (2013) The hydrus-1d software package for simulating the movement of water, heat, and multiple solutes in variably saturated media, Hydrus Software Series 3. Version 4:16

  • Stauffer PH, Vrugt JA, Turin H, Gable CW, Soll WE (2009) Untangling diffusion from advection in unsaturated porous media: Experimental data, modeling, and parameter uncertainty. Vadose Zone J 8:510–522

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359. doi:10.1023/A:1008202821328

    Article  Google Scholar 

  • Subagadis Y, Grundmann J, Schütze N, Schmitz G (this issue), An integrated approach to conceptualise hydrological and socio-economic interactions for hydrosystem management, Environmental Earth Sciences, this issue, XX–XX

  • van Dam JC, Stricker JNM, Droogers P (1992) Inverse method for determining soil hydraulic functions from one-step outflow experiments. Soil Sci Soc Am J 56(4):1042–1050

    Article  Google Scholar 

  • van Dam JC, Stricker JNM, Droogers P (1994) Inverse method to determine soil hydraulic functions from multistep outflow experiments. Soil Sci Soc Am J 58(3):647–652

    Article  Google Scholar 

  • van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Am J 44:892–898

    Article  Google Scholar 

  • van Genuchten R (1978) Calculating the unsaturated hydraulic conductivity with a new, closed-form analytical model, Tech. rep., Research Report 78-WR-08, Water Resources Program, Dep. of Civil Engineering, Princeton Univ., Princeton, NJ

  • Vrugt J, Robinson B (2007) Improved evolutionary optimization from genetically adaptive multimehtod search. Proc Natl Acad Sci USA (PNAS) 104(3):708–711

    Article  Google Scholar 

  • Vrugt J, Gupta HV, Bastidas LA, Bouten W, Sorooshian S (2003a), Effective and efficient algorithm for multiobjective optimization of hydrologic models, Water Resour Res, 39(8):1214. doi:10.1029/2002WR001746

  • Vrugt J, Stauffer P, Wöhling T, Robinson B, Vesselinov V (2008) Inverse modelling of subsurface flow and transport properties: A review with new developments. Vadose Zone J 7:843–864

    Article  Google Scholar 

  • Vrugt J, Robinson B, Hyman J (2009) Self-adaptive multimethod search for global optimization in real-parameter spaces. IEEE Trans Evol Comput 13:243–259

    Article  Google Scholar 

  • Vrugt JA, Bouten W (2002) Validity of first-order approximations to describe parameter uncertainty in soil hydrologic models. Soil Sci Soc Am J 66(6):1740–1751

    Article  Google Scholar 

  • Vrugt JA, Bouten W, Weerts AH (2001) Information content of data for identifying soil hydraulic parameters from outflow experiments, Soil Sci Soc Am J 65:19–27

    Article  Google Scholar 

  • Vrugt JA, Bouten W, Gupta HV, Hopmans JW (2003b) Toward improved identifiability of soil hydraulic parameters: On the selection of a suitable parametric model. Vadose Zone J 2:98–113

    Google Scholar 

  • Weller U, Vogel H-J (2012) Conductivity and hydraulic nonequilibrium across drainage and infiltration fronts, Gsvadzone 11(3). doi:10.2136/vzj2011.0134

  • Weller U, Ippisch O, Köhne M, Vogel H-J (2011) Direct measurement of unsaturated conductivity including hydraulic nonequilibrium and hysteresis. Vadose Zone J 10(2):654–661

    Article  Google Scholar 

  • Wildenschild D, Hopmans J, Šim\(\dot{\rm u }\)nek J (2001) Flow rate dependence of soil hydraulic characteristics. Soil Sci Am J 65:35–48

    Article  Google Scholar 

  • Wöhling T, Vrugt J (2011) Multiresponse multilayer vadose zone model calibration using markov chain monte carlo simulation and field water retention data. Water Resour Res 47:1–19

    Article  Google Scholar 

  • Wöhling T, Vrugt JA, Barkle GF (2008) Comparison of three multiobjective optimization algorithms for inverse modeling of vadose zone hydraulic properties. Soil Sci Soc Am J 72:305–319

    Article  Google Scholar 

  • Wöhling T, Schütze N, Heinrich B, Šim\(\dot{\rm u }\)nek J, Barkle GF (2009) Three-dimensional modeling of multiple automated equilibrium tension lysimeters to measure vadose zone fluxes. Vadose Zone J 8:1051–1063

  • Wöhling T, Geiges A, Nowak W, Gayler S, Högy P, Wizemann HD (2013a) Towards optimizing experiments for maximum-conficence model selection between different soil–plant models. Procedia Environ Sci 19:514–523

    Article  Google Scholar 

  • Wöhling T, Samaniego L, Kumar R (2013b) Evaluating multiple performance criteria to calibrate the distributed hydrological model of the upper neckar catchment. Environ Earth Sci 69(2):453–468. doi:10.1007/s12665-013-2306-2

    Article  Google Scholar 

  • Wöhling T et al (2013c) Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled soil–plant models and clm3.5. Water Resour Res 49:1–22

    Article  Google Scholar 

  • Yapo PO, Gupta HV, Sorooshian S (1998) Multi-objective global optimization for hydrologic models. J Hydrol 204:83–97

    Article  Google Scholar 

Download references

Acknowledgments

The manuscript was prepared within the research project IWAS funded by the German Federal Ministry of Education and Research (BMBF) under grant no. 02WM1166. In addition, we wish to thank the Ministry of Agriculture and Fisheries of the Sultanate of Oman for supporting the IWAS-IWRM project. The authors thank the three anonymous reviewer for their constructive comments which helped to improve this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Werisch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werisch, S., Grundmann, J., Al-Dhuhli, H. et al. Multiobjective parameter estimation of hydraulic properties for a sandy soil in Oman. Environ Earth Sci 72, 4935–4956 (2014). https://doi.org/10.1007/s12665-014-3537-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3537-6

Keywords