Environmental Earth Sciences

, Volume 73, Issue 3, pp 1357–1368 | Cite as

Emerging contaminants in landfill leachate and their sustainable management

  • Anushuya Ramakrishnan
  • Lee Blaney
  • Jimmy Kao
  • R. D. Tyagi
  • Tian C. Zhang
  • Rao Y. Surampalli
Original Article


Emerging contaminants (ECs) are compounds that recently have been shown to occur widely in the environment and identified as being a potential environmental or public health risk, but yet adequate data do not exist to determine their risk. This review article focuses on ECs including pharmaceuticals, personal care products, surfactants, plasticizers, fire retardants, pesticides and nanomaterials. Their source, fate and transport in landfill leachate and adjacent environments have been discussed. Furthermore, state-of-the-art control and treatment techniques for ECs in landfill leachate have been presented. Sustainable management efforts for screening and control of ECs have been discussed. Molecular biology techniques to enumerate microbes capable of degrading ECs in landfills and their leachate are introduced. The article also presents future perspectives on the management of ECs in landfill leachate.


Emerging contaminants (ECs) Pharmaceuticals and personal care products Surfactants Plasticizers Pesticides Fire retardants Nanomaterial Landfill Leachate 



Brominated flame retardants


Biological oxygen demand




Chemical oxygen demand






Di-butyl phthalate


Di-(2-ethylhexyl) phthalate


Diethyl toluamide


Deoxy ribo nucleic acid


2,4-Dichlorophenoxyacetic acid


2-(2,4-Dichlorophenoxy) propionic acid


2,4,5-Trichlorophenoxyacetic acid


Emerging contaminants


Endocrine disrupting chemicals


Environmental protection agency


Membrane bioreactors


Municipal solid waste


N-Butyl benzenesulfonamide


Non-methanogenic volatile organic compounds


Non-steroidal anti-inflammatory drug


Phthalate esters


Polycyclic aromatic hydrocarbons


Polymerase chain reaction




Perfluorooctanoic acid


Perfluorooctane sulfonate


Pharmaceuticals and personal care products


Sulfate reducing bacteria


Wastewater treatment plant


  1. Ahel T, Mijatovic I, Matosic M, Ahel M (2004) Nanofiltration of a landfill leachate containing pharmaceutical intermediates from vitamin C production. Food Technol Biotechnol 42:99–104Google Scholar
  2. Ahmed FN, Lan CQ (2012) Treatment of landfill leachate using membrane bioreactors: a review. Desalination 287:41–54CrossRefGoogle Scholar
  3. Almadidy A, Watterson J, Piunno P, Foulds IV, Horgen PA, Krull U (2003) A fibre-optic biosensor for detection of microbial contamination. Can J Chem 81:339–349CrossRefGoogle Scholar
  4. Atwater JW, Jasper S, Mavinic DS, Koch FA (1983) Experiments using Daphnia to measure landfill leachate toxicity. Water Res 17:1855–1861CrossRefGoogle Scholar
  5. Bala Subramanian S, Yan S, Tyagi RD, Surampalli RY (2009) Molecular biology techniques to enumerate microbes capable of degrading chemicals of emerging environmental concern. In: Contaminants of Emerging Environmental Concern, ASCE, Reston, VirginiaGoogle Scholar
  6. Barnes KK, Christenson SC, Kolpin DW, Focazio MJ, Furlong ET, Zaugg SD, Meyer MT, Barber LB (2004) Pharmaceuticals and other organic waste water contaminants within a leachate plume downgradient of a municipal landfill. Ground Water Monit Rem 24:119–126CrossRefGoogle Scholar
  7. Benachour N, Aris A (2009) Toxic effects of low doses of Bisphenol-A on human placental cells. Toxicol Appl Pharmacol 241:322–328CrossRefGoogle Scholar
  8. Benfenati E, Barcelò D, Johnson I, Galassi S, Levsen K (2003) Emerging organic contaminants in leachates from industrial waste landfills and industrial effluent. Trends Anal Chem 22:757–765CrossRefGoogle Scholar
  9. Benjamin MM (2010) Water chemistry. Waveland Press, Long GroveGoogle Scholar
  10. Bhandari A, Surampalli R, Adams CD, Champagne P, Ong S-K, Tyagi RD, Zhang TC (2009) Contaminants of emerging environmental concern. ASCE, RestonCrossRefGoogle Scholar
  11. Bila DM, Filipe Montalvão A, Silva AC, Dezotti M (2005) Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement. J Hazard Mater 117:235–242CrossRefGoogle Scholar
  12. Blaney LM, SenGupta AK (2006) Comment on “Landfill-stimulated iron reduction and arsenic release at the Coakley Superfund Site (NH)”. Environ Sci Technol 40:4037–4038CrossRefGoogle Scholar
  13. Borneman J (1999) Culture-independent identification of microorganisms that respond to specified stimuli. Appl Environ Microbiol 65:3398–3400Google Scholar
  14. Buszka PM, Yeskis DJ, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT (2009) Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000–2002. Bull Environ Contamin Toxicol 82:653–659CrossRefGoogle Scholar
  15. Chen H, Zhang M (2013) Occurrence and removal of antibiotic resistance genes in municipal wastewater and rural domestic sewage treatment systems in eastern China. Environ Int 55:9–14CrossRefGoogle Scholar
  16. Cook SM, VanDuinen BJ, Love NG, Skerlos SJ (2012) Life cycle comparison of environmental emissions from three disposal options for unused pharmaceuticals. Environ Sci Technol 46:5535–5541CrossRefGoogle Scholar
  17. Cozzarelli IM, Bohlke JK, Masoner J, Breit GN, Lorah MM, Tuttle MLW, Jaeschke JB (2011) Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma. Ground Water 49:663–687CrossRefGoogle Scholar
  18. CPSIA (2008) Consumer Product Safety Improvement Act of 2008, Public Law 110-314. August 14, 2008Google Scholar
  19. Daly K, Sharp RJ, McCarthy AJ (2000) Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Microbiology 146:1693–1705Google Scholar
  20. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect 107:907–938CrossRefGoogle Scholar
  21. Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9(5):445–453Google Scholar
  22. de Lemos JL, Bostick BC, Renshaw CE, St US, Feng X (2006) Landfill-stimulated iron reduction and arsenic release at the Coakley Superfund Site (NH). Environ Sci Technol 40:67–73CrossRefGoogle Scholar
  23. deLorenzo V, Timmins KN (1994) Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386–405CrossRefGoogle Scholar
  24. Di Iaconi C, Ramadori R, Lopez A (2006) Combined biological and chemical degradation for treating a mature municipal landfill leachate. Biochem Eng J 31:118–124CrossRefGoogle Scholar
  25. Drury B, Scott J, Rosi-Marshall EJ, Kelly JJ (2013) Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities. Environ Sci Technol 47:8923–8930Google Scholar
  26. Eggen T, Moeder M, Arukwe A (2010) Municipal landfill leachates: a significant source for new and emerging pollutants. Sci Total Environ 408:5147–5157CrossRefGoogle Scholar
  27. EPA (2001) Clean Sweep Report. Office of Pesticide Programs in the U.S. Environmental Protection Agency. October 23, 2001Google Scholar
  28. EPA (2008) Amendment to the Universal Waste Rule: Addition of pharmaceuticals; Proposed Rule. Federal Register 73(232)Google Scholar
  29. EPA (2009) Drinking water contaminant candidate list 3—final. Document EPA–HQ–OW–2007–1189Google Scholar
  30. Gebert J, Pavese NS, Alawi M, Bodrossi L (2008) Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ Microbiol 10:1175–1188CrossRefGoogle Scholar
  31. Golub MS, Wu KL, Kaufman FL, Li L-H, Moran-Messen F, Zeise L, Alexeeff GV, Donald JM (2010) Bisphenol A: developmental toxicity from early prenatal exposurea. Birth Defects Res B 89:441–466CrossRefGoogle Scholar
  32. Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155CrossRefGoogle Scholar
  33. Heberer T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17CrossRefGoogle Scholar
  34. Heberer T, Schmidt-Baumler, Stan J (1998) Occurrence and distribution of organic contaminants in the aquatic system in Berlin. Part I. Drug residues and other polar contaminants in Berlin surface and groundwater. Acta Hydrochim Hydrobiol 26:272–278CrossRefGoogle Scholar
  35. Holm JV, Ruegge K, Bjerg PL, Christensen TH (1995) Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grindsted, Denmark). Environ Sci Technol 29:1415–1420CrossRefGoogle Scholar
  36. Hopkins ZR, Blaney L (2014) A novel approach to modeling the reaction kinetics of tetracycline antibiotics with aqueous ozone. Sci Total Environ 468–469:337–344CrossRefGoogle Scholar
  37. Huang LN, Chen YQ, Zhou H, Lou S, Lan CY, Qu LH (2003) Characterization of methanogenic archaea in the leachate of a closed municipal solid waste landfill. FEMS Microbiol Ecol 46:171–177CrossRefGoogle Scholar
  38. Jonsson S, Ejlertsson J, Ledin A, Mersiowsky I, Svensson BH (2003) Mono- and diesters from o-phthalic acid in leachates from different European landfills. Water Res 37:609–617CrossRefGoogle Scholar
  39. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ldin A, Christensen TH (2002) Present and long term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336CrossRefGoogle Scholar
  40. Kosjek T, Andersen HR, Kompare B, Ledin A, Heath E (2009) Fate of carbamazepine during water treatment. Environ Sci Technol 43:6256–6261CrossRefGoogle Scholar
  41. Laitinen N, Luonsi A, Vilen J (2006) Landfill leachate treatment with sequencing batch reactor and membrane bioreactor. Desalination 191:86–91CrossRefGoogle Scholar
  42. Lyche JL, Gutleb AC, Bergman Å, Eriksen GS, Murk AJ, Ropstad E, Saunders M, Skaare JU (2009) Reproductive and developmental toxicity of phthalates. J Toxicol Environ Health Part B 12:225–249CrossRefGoogle Scholar
  43. Margesin R, Schinner F (1996) Heavy metal resistant Arthrobacter sp.—a tool for studying conjugational plasmid transfer between gramnegative and gram-positive bacteria. J Basic Microbiol 36:269–282CrossRefGoogle Scholar
  44. Martino-Andrade AJ, Chahoud I (2010) Reproductive toxicity of phthalate esters. Mol Nutr Food Res 54:148–157CrossRefGoogle Scholar
  45. Matosic M, Terzic S, Korajlija Jakopovic H, Mijatovic I, Ahel M (2008) Treatment of a landfill leachate containing compounds of pharmaceutical origin. Water Sci Technol 58:597–602CrossRefGoogle Scholar
  46. Musson SE, Townsend TG (2009) Pharmaceutical compound content of municipal solid waste. J Hazard Mater 162:730–735CrossRefGoogle Scholar
  47. NCSL (2013) National Conference of State Legislatures, NCSL Policy Update: State Restrictions on Bisphenol A (BPA) in Consumer Products. Available at (last visited September 28 2013)
  48. ONDCP (2009) Proper disposal of prescription drugs. Office of National Drug Control PolicyGoogle Scholar
  49. Paxeus N (2000) Organic compounds in municipal landfill leachates. Water Sci Technol 42:323–333Google Scholar
  50. Reinhart DR (1993) A review of recent studies on the sources of hazardous compounds emitted from municipal solid waste landfills: a US experience. Waste Manag Res 11:257CrossRefGoogle Scholar
  51. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493CrossRefGoogle Scholar
  52. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360CrossRefGoogle Scholar
  53. Robinson HD (1995) A review of the composition of leachates from domestic wastes in landfill sites. UK7 Aspinwall and Company for the Department of the Environment, p 511Google Scholar
  54. Rosi-Marshall E, Royer T (2012) Pharmaceutical compounds and ecosystem function: An emerging research challenge for aquatic ecologists. Ecosystems 15:867–880CrossRefGoogle Scholar
  55. Schwarzbauer J, Heim S, Brinker S, Litke R (2002) Occurrence and alteration of organic contaminants in seepage and leakage water from a waste deposit landfill. Water Res 36:2275–2287CrossRefGoogle Scholar
  56. Silva AC, Dezotti M, Sant’Anna GL Jr (2004) Treatment and detoxification of a sanitary landfill leachate. Chemosphere 55:207–214CrossRefGoogle Scholar
  57. Singh S, Li SS-L (2011) Phthalates: toxicogenomics and inferred human diseases. Genomics 97:148–157CrossRefGoogle Scholar
  58. Slack RJ, Gronow JR, Voulvoulis N (2005) Household hazardous waste in municipal landfills: contaminants in leachate. Sci Total Environ 337:119–137CrossRefGoogle Scholar
  59. Staples CA, Tilghman Hall A, Friederich U, Caspers N, Klecka GM (2011) Early life-stage and multigeneration toxicity study with bisphenol A and fathead minnows (Pimephales promelas). Ecotoxicol Environ Saf 74:1548–1557CrossRefGoogle Scholar
  60. State of California (2007) California Code-Article 3.4: Drug Waste Management and Disposal, Public Resources Code § 47120-47126Google Scholar
  61. State of Iowa (2007) Senate File 579-Pharmaceutical collection and disposal pilot projectGoogle Scholar
  62. State of Maine (2005) Title 22 §2700. Unused Pharmaceutical Disposal ProgramGoogle Scholar
  63. State of Oregon (2007) Senate Bill 737-Implementation: Addressing priority persistent pollutants in Oregon’s waterGoogle Scholar
  64. State of Pennsylvania (2008) House Bill 2073-Pharmaceutical Drug Disposal ActGoogle Scholar
  65. State of Virginia (2008) House Bill 86-Unused Pharmaceuticals Disposal ProgramGoogle Scholar
  66. State of Wisconsin (2007) Senate Bill 40Google Scholar
  67. Van Tassel K, Goldman R (2011) The growing consumer exposure to nanotechnology in everyday products: regulating innovative technologies in light of lessons from the past. Conn Law Rev 44:481–530Google Scholar
  68. Wang F, Smith DW, El-Din MG (2003) Application of advanced oxidation methods for landfill leachate treatment: a review. J Environ Eng Sci 2:413–427CrossRefGoogle Scholar
  69. Xu Y, Zhou Y, Wang D, Chen S, Liu J, Wang Z (2008) Occurrence and removal of organic micro pollutants in the treatment of landfill leachate by combined anaerobic-membrane bioreactor technology. J Environ Sci 20:1281–1287CrossRefGoogle Scholar
  70. Yang Y, Xu M, Wall JD, Hu Z (2012) Nanosilver impact on methanogenesis and biogas production from municipal solid waste. Waste Manag 32:816–825CrossRefGoogle Scholar
  71. Zayen A, Mnif S, Aloui F, Fki F, Loukil S, Bouaziz M, Sayadi S (2010) Anaerobic membrane bioreactor for the treatment of leachates from Jebel Chakir discharge in Tunisia. J Hazard Mater 177:918–923CrossRefGoogle Scholar
  72. Zhang, Surampalli RY, Lai KCK, Hu Z, Tyagi RD, Lo I (eds) (2009) Nanotechnologies for water environment applications. ASCE, RestonGoogle Scholar
  73. Zhou L-J, Ying G-G, Liu S, Zhao J-L, Yang B, Chen Z-F, Lai H-J (2013) Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China. Sci Total Environ 452–453:365–376CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Anushuya Ramakrishnan
    • 1
  • Lee Blaney
    • 2
  • Jimmy Kao
    • 3
  • R. D. Tyagi
    • 4
  • Tian C. Zhang
    • 5
  • Rao Y. Surampalli
    • 6
  1. 1.Division of Epidemiology, Human Health and Environmental SciencesUT School of Public HealthHoustonUSA
  2. 2.Department of Chemical, Biochemical and Environmental EngineeringUniversity of Maryland Baltimore CountyBaltimoreUSA
  3. 3.National Sun-yat Sen UniversityKaohsiungTaiwan
  4. 4.INRS-ETE, University of QuebecQuebecCanada
  5. 5.Department of Civil EngineeringUniversity of NebraskaLincolnUSA
  6. 6.U.S. Environmental Protection AgencyLenexaUSA

Personalised recommendations