Skip to main content
Log in

Spatial distribution and source apportionment of heavy metals in soils of Gebeng industrial city, Malaysia

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Heavy metal concentrations were examined in 30 soil samples from Gebeng industrial city, Malaysia using inductively coupled plasma–mass spectrometry for As, Ba, Cd, Co, Cr, Cu, Ni, Pb and Zn, and direct mercury analyzer (DMA-80) for Hg. Multivariate statistical techniques including hierarchical cluster analysis (CA), principal component analysis (PCA), correlation analysis and analysis of variance were used to identify the spatial distribution and potential sources of heavy metals. The mean concentrations of heavy metals in the soil samples are in decreasing order as follows: Co > Ba > Zn > As > Pb > Cr > Cu > Ni > Hg > Cd. The Gebeng soils are characterized by high mean relative concentration of As, Ba, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn in the industrial zone (IZ) than the Kampung-Balok residential area (KB) and submerged area (SA), indicating inputs from industrial activities. Geochemical results suggested that Gebeng soils are primarily polluted by As, Co, Hg, Pb, and Cu subsequently derived from anthropogenic sources. PCA and CA in the heavy metals indicate both anthropogenic and natural origin. However, the geoaccumulation index and pollution load index further confirm the high contamination levels of the heavy metals in IZ and low to uncontaminated in KB and SA regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Asrari E (2014) Heavy metal contamination of water and soil: analysis, assessment, and remediation strategies. CRC Press, USA, p 386

    Book  Google Scholar 

  • Astel A, Tsakovski S, Simeonov V, Reisenhofer E, Piselli S, Barbieri P (2008) Multivariate classification and modeling in surface water pollution estimation. Anal Bioanal Chem 390:1283–1292

    Article  Google Scholar 

  • Bai JH, Cui BS, Chen B, Zhang KJ, Deng W, Gao HF, Xiao R (2011) Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol Model 222:268–274

    Article  Google Scholar 

  • Banerjee US, Gupta S (2013) Impact of industrial waste effluents on river Damodar adjacent to Durgapur industrial complex, West Bengal, India. Environ Monit Assess 185:2083–2094

    Article  Google Scholar 

  • Bengraine K, Marhaba TF (2003) Using principal component analysis to monitor spatial and temporal changes in water quality. J Hazard Mater B100:179–195

    Article  Google Scholar 

  • Bentum JK, Anang M, Boadu KO, Koranteng-Addo EJ, Owusu AE (2011) Assessment of heavy metals pollution of sediments from Fosu lagoon in Ghana. Bull Chem Soc Ethiop 25:191–196

    Article  Google Scholar 

  • Bhuiyan MAH, Parvez L, Islam MA, Dampare SB, Suzuki S (2010) Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. J Hazard Mater 173:384–392

    Article  Google Scholar 

  • Birkefeld A, Schulin R, Nowack B (2005) In-situ method for analyzing the long-term behavior of particulate metal phases in soils. In: Lichtfouse E et al (eds) Environmental chemistry. Springer, Berlin, p 780

    Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Bullock P, Gregory PJ (2009) Soils: a neglected resource in urban areas. In: Bullock P, Gregory PJ (eds) Soils in the urban environment. Blackwell Publishing Ltd., Oxford, pp 1–4

    Google Scholar 

  • Chabukdhara M, Nema AK (2013) Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: probabilistic health risk approach. Ecotoxicol Environ Saf 87:57–64

    Article  Google Scholar 

  • Chen ZS (1998) The management of contaminated soil remediation programmes. Land Contam Reclam 6:223–237

    Google Scholar 

  • Chen TB, Wong JWC, Zhou HY, Wong MH (1997) Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environ Pollut 96:61–68

    Article  Google Scholar 

  • Chen XD, Lu XW, Yang G (2012) Sources identification of heavy metals in urban topsoil from inside the Xi’an Second Ringroad, NW China using multivariate statistical methods. Catena 98:73–78

    Article  Google Scholar 

  • Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res 10:192–198

    Article  Google Scholar 

  • Cheng H, Li M, Zhao C, Li K, Peng M, Qin A, Cheng X (2014) Overview of trace metals in the urban soil of 31 metropolises in China. J Geochem Explor 139:31–52

    Article  Google Scholar 

  • Combs SM, Nathan MV (1998) Soil organic matter. In: Brown JR (ed) Recommended Chemical Soil Test Procedure for the North Central Region. NCR Publ. No. 221, pp 57–58. (revised). Missouri Agr. Exp. Sta. SB 1001. Columbia, MO

  • D’Emilio M, Caggiano R, Macchiato M, Ragosta M, Sabia S (2013) Soil heavy metal contamination in an industrial area: analysis of the data collected during a decade. Environ Monit Assess 185:5951–5964

    Article  Google Scholar 

  • Dheeba B, Sampathkumar P (2012) Evaluation of heavy metal contamination in surface soil around industrial area, Tamil Nadu, India. Int J ChemTech Res 4:1229–1240

    Google Scholar 

  • Dragović S, Mihailović N, Gajić B (2008) Heavy metals in soils: distribution, relationship with soil characteristics and radionuclides and multivariate assessment of contamination sources. Chemosphere 72:491–495

    Article  Google Scholar 

  • EPA (2007a) Method 6020A: inductively coupled plasma-mass spectrometry. In: SW-846, test methods for evaluating solid waste, physical/chemical methods. US Environmental Protection Agency, USA, pp 1–30

  • EPA (2007b) Method 7471B: mercury in solid or semisolid waste. In: SW-846, test methods for evaluating solid waste, physical/chemical methods. US Environmental protection agency, USA, pp 1–11

  • Fabietti G, Biasioli M, Barberis R, Ajmone-Marsan F (2010) Soil contamination by organic and inorganic pollutants at the regional scale: the case of Piedmont, Italy. J Soil Sediments 10:290–300

    Article  Google Scholar 

  • Franco-Uría A, López-Mateo C, Roca E, Fernández-Marcos ML (2009) Source identification of heavy metals in pastureland by multivariate analysis in NW Spain. J Hazard Mater 165:1008–1015

    Article  Google Scholar 

  • Gao S, Walker WJ, Dahlgren RA, Bold J (1997) Simultaneous sorption of Cd, Cu, Ni, Zn, Pb, and Cr on soils treated with sewage sludge supernatant. Water Air Soil Pollut 93:331–345

    Google Scholar 

  • Gotelli NJ, Ellison AM (2004) A primer of ecological statistics, 1st edn. Sinauer Associates, Sunderland, p 492

    Google Scholar 

  • Gowd SS, Reddy MR, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga plain, Uttar Pradesh, India. J Hazard Mater 174:113–121

    Article  Google Scholar 

  • Guo P, Xie ZL, Li J, Kang CL, Liu JH (2005) Relationships between fractionations of Pb, Cd, Cu, Zn and Ni and soil properties in urban soils of Changchun, China. Chin Geogr Sci 15:179–185

    Article  Google Scholar 

  • Harikumar PS, Nasir UP, Rahman MPM (2009) Distribution of heavy metals in the core sediments of a tropical wetland system. Int J Environ Sci Technol 6:225–232

    Article  Google Scholar 

  • Hossain HMZ, Roser BP, Kimura J-I (2010) Petrography and whole-rock geochemistry of the Tertiary Sylhet succession, northeastern Bengal Basin, Bangladesh: provenance and source area weathering. Sed Geol 228:171–183

    Article  Google Scholar 

  • Hossain MA, Mir SI, Nasly MA, Wahid ZA, Aziz EA (2012) Assessment of spatial variation of water quality of Tunggak River adjacent to Gebeng industrial estate, Malaysia. Assessment 501:A1–A07

    Google Scholar 

  • Hossain MA, Sujaul IM, Nasly MA (2013) Water quality index: an indicator of surface water pollution in eastern part of Peninsular Malaysia. Res J Recent Sci 2:10–17

    Google Scholar 

  • Iqbal J, Shah MH (2011) Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan. J Hazard Mater 192:887–898

    Article  Google Scholar 

  • Islam MS, Hossain MA, Nasly MA, Sobahan MA (2013) Effect of industrial pollution on the spatial variation of surface water quality. Am J Environ Sci 9:120–129

    Article  Google Scholar 

  • Jordanova D, Goddu SR, Kotsev T, Jordanova N (2013) Industrial contamination of alluvial soils near Fe–Pb mining site revealed by magnetic and geochemical studies. Geoderma 192:237–248

    Article  Google Scholar 

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin, p 550

    Book  Google Scholar 

  • Lalah JO, Ochieng EZ, Wandiga SO (2008) Sources of heavy metal input into Winam Fulf, Kenya. Bull Environ Contam Toxicol 81:277–284

    Article  Google Scholar 

  • Li S, Zhang Q (2010) Spatial characterization of dissolved trace elements and heavy metals in the upper Han River (China) using multivariate statistical techniques. J Hazard Mater 176:579–588

    Article  Google Scholar 

  • Li F, Fan Z, Xiao P, Oh K, Ma X, Hou W (2009a) Contamination, chemical speciation and vertical distribution of heavy metals in soils of an old and large industrial zone in Northeast China. Environ Geol 57:1815–1823

    Article  Google Scholar 

  • Li S, Xu Z, Wang H, Wang J, Zhang Q (2009b) Geochemistry of the upper Han River basin, China. 3. Anthropogenic inputs and chemical weathering to the dissolved load. Chem Geol 264:89–95

    Article  Google Scholar 

  • Li F, Huang J, Zeng G, Yuan X, Li X, Liang J, Wang X, Tang X, Bai B (2013) Spatial risk assessment and sources identification of heavy metals in surface sediments from the Dongting Lake, Middle China. J Geochem Explor 132:75–83

    Article  Google Scholar 

  • Liu WX, Li XD, Shen ZG, Wang DC, Wai OWH, Li YS (2003) Multivariate statistical study of heavy metals enrichment in sediments of the Pearl River Estuary. Environ Pollut 121:377–388

    Article  Google Scholar 

  • Loska K, Wiechula D, Korus I (2004) Metal contamination of farming soils affected by industry. Environ Int 30:159–165

    Article  Google Scholar 

  • Lu XW, Wang LJ, Li LY, Lei K, Huang L, Kang D (2010) Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater 173:744–749

    Article  Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJ 2:108–118

    Google Scholar 

  • Nasly MA, Hossain MA, Islam MS (2013) Water quality index of Sungai Tunggak: an analytical study. In: Proceedings of 3rd international conference on chemical, biological and environment sciences, Malaysia, 40–44

  • Oyedele DJ, Asonugho C, Awotoye OO (2006) Heavy metals in soil and accumulation by edible vegetables after phosphate fertilizer application. Electron J Environ Agric Food Chem 5:1446–1453

    Google Scholar 

  • Pekey H, Karaka D, Bakoglu M (2004) Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses. Mar Pollut Bull 49:809–818

    Article  Google Scholar 

  • Piper CS (1942) Soil and plant analyses. University of Adelaide, Australia

    Google Scholar 

  • Purushotham D, Lone MA, Rashid M, Rao AN, Ahmed S (2012) Deciphering heavy metal contamination zones in soils of a granitic terrain of southern India using factor analysis and GIS. J Earth Syst Sci 121:1059–1070

    Article  Google Scholar 

  • Quenea K, Lamy I, Winterton P, Bermond A, Dumat C (2009) Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 149:217–223

    Article  Google Scholar 

  • Ramos-Miras JJ, Roca-Perez L, Guzmán-Palomino M, Boluda R, Gil C (2011) Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). J Geochem Explor 110:186–192

    Article  Google Scholar 

  • Rayment GE, Higginson FR (1992) Australian laboratory handbook of soil and water chemical methods. Australian soil and land survey handbooks, Inkata, Melbourne, p 3

    Google Scholar 

  • Rubio B, Nombela MA, Vilas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 11:968–980

    Article  Google Scholar 

  • Schulte EE, Hopkins BG (1996) Estimation of soil organic matter by weight 3 organic matter (LOI) loss-on-ignition. In: Magdoff FR, Tabatabai MA, Hanlon EA Jr (eds) Soil organic matter: analysis and interpretation. Soil Sci. Soc. Am, Madison, pp 21–31

    Google Scholar 

  • Shamshuddin J, Anda M (2008) Charge properties of soils in Malaysia dominated by kaolinite, gibbsite, goethite and hematite. Bull Geol Soc Malays 54:27–31

    Google Scholar 

  • Simeonova P, Simeonov V (2006) Chemometrics to evaluate the quality of water sources for human consumption. Mikrochim Acta 156:315–320

    Article  Google Scholar 

  • Smith SR (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156

    Article  Google Scholar 

  • Solgi E, Esmaili-Sari A, Riyahi-Bakhtiari A, Hadipour M (2012) Soil contamination of metals in the three industrial estates, Arak, Iran. Bull Environ Contam Toxicol 88:634–638

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Tessens E, Shamshuddin J (1983) Quantitative relationships between mineralogy and properties of tropical soils. UPM, Serdang, p 190

    Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunter 33:566–575

    Article  Google Scholar 

  • Tume P, Bech J, Reverter F, Bech J, Longan L, Tume L, Sepúlveda B (2011) Concentration and distribution of twelve metals in Central Catalonia surface soils. J Geochem Explor 109:92–103

    Article  Google Scholar 

  • Uria AF, Mateo CL, Roca E, Marcos MLF (2008) Source identification of heavy metals in pasturelands by multivariate analysis in NW Spain. J Hazard Mater 165:1008–1015

    Article  Google Scholar 

  • Usero J, Garcia A, Fraidias J (2000) Calidad de las aguas y sedimentos del Litoral Andaluz. In: Junta de Andalicia, Consejeria del Medio Ambiente, Sevilla, (Editorial) p 164

  • Yang Z, Lu W, Long Y, Bao X, Yang Q (2011) Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J Geochem Explor 108:27–38

    Article  Google Scholar 

  • Ye C, Li S, Zhang Y, Zhang Q (2011) Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China. J Hazard Mater 191:366–372

    Article  Google Scholar 

  • Yin Y, Impellitteri CA, You S-J, Allen HE (2002) The importance of organic matter distribution and extract soil:solution ratio on the desorption of heavy metals from soils. Sci Total Environ 287:107–119

    Article  Google Scholar 

  • Yuan GL, Liu C, Yang ZF (2011) Inputting history of heavy metals into the inland lake recorded in sediment profiles: Poyang Lake in China. J Hazard Mater 185:336–345

    Article  Google Scholar 

  • Zarcinas BA, Ishak CF, McLaughlin MJ, Cozens G (2004) Heavy metals in soils and crops in southeast Asia. 1. Peninsular Malaysia. Environ Geochem Health 26:343–357

    Article  Google Scholar 

  • Zhang W, Feng H, Chang J, Qu J, Xie H, Yu L (2009) Heavy metal contamination in surface sediments of Yangtze River intertidal zone: an assessment from different indexes. Environ Pollut 157:1533–1543

    Article  Google Scholar 

  • Zhao Q, Liu S, Deng L, Yang Z, Dong S, Wang C, Zhang Z (2012) Spatio-temporal variation of heavy metals in fresh water after dam construction: a case study of the Manwan Reservoir, Lancang River. Environ Monit Assess 184:4253–4266

    Article  Google Scholar 

  • Zhou F, Guo H, Liu L (2007) Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environ Geol 53:295–305

    Article  Google Scholar 

  • Zhou J, Ma D, Pan J, Nie W, Wu K (2008) Application of multivariate statistical approach to identify heavy metal sources in sediment and waters: a case study in Yangzhong, China. Environ Geol 54:373–380

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Faculty of Civil Engineering and Earth Resources, University Malaysia Pahang of Malaysia (RDU 110354 and GRS 120363). We would like to thank Prof. J.W. Lamoreaux Editor-in-Chief and two anonymous reviewers for providing thoughtful comments on an early draft of the manuscript and G.M.A. Ali for assisting in correcting the English grammatical errors. We would also like to thank Dr. M.T. Ahmed for preparing figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Zakir Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.A., Ali, N.M., Islam, M.S. et al. Spatial distribution and source apportionment of heavy metals in soils of Gebeng industrial city, Malaysia. Environ Earth Sci 73, 115–126 (2015). https://doi.org/10.1007/s12665-014-3398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3398-z

Keywords

Navigation