Skip to main content

Advertisement

Log in

Modelling total phosphorus input pathways in the Porsuk reservoir catchment in Turkey

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

As a country in the Mediterranean region, Turkey must face the effects of climate change on water quality and quantity. Decision support systems are accepted as useful and practical tools for the protection and management of water resources. The need for such tools is rapidly emerging in conjunction with industrial developments in Turkey. Against this background, the empirical area-differentiated phosphorus model MEPhos developed for the mid-European site conditions was transferred and adapted for a representative study area in Turkey, the Porsuk reservoir catchment. Adaption included the development of a model approach to consider the P input into surface waters from septic tanks. For this purpose, several field campaigns were carried out to define characteristic P emission coefficients for septic tanks. In addition, the soil phosphorus content of the top soil was defined to generate reliable input data for the modelling of the P input into surface water via soil erosion in agricultural areas. According to the MEPhos model results, mean annual phosphorous loads of all types of point sources dominate with a percentage of around 57 %. Erosion contributes to 40 % of the total P load and displays the most significant diffuse input pathway. The validation studies conducted between 2007 and 2011 showed a satisfying agreement with the observed values. After validation, the efficiency of measures to reduce P inputs into the Porsuk reservoir was analysed. It was found that most measures to prevent soil erosion seem to be appropriate, whereas measures to reduce P input from point sources seem to be less efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alganatay N (1968) Orta Anadolu Kuzey bolgesi topraklarının fosfor durumu ve bu bolge topraklarinda fosfor ihtiyaclarinin tayininde kullanilacak metodlar uzerinde bir arastirma. Ankara Universitesi

  • APHA (2005) Methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Arheimer B, Liden R (2000) Nitrogen and phosphorus concentrations from agricultural catchments—influence of spatial and temporal variables. J Hydrol 227:140–159. Retrieved from http://www.sciencedirect.com/science/article/pii/S0022169499001778

  • Arslan O (2008) Su Kalitesi Verilerinin CBS ile Cok Degiskenli Istatistik Analizi (Porsuk Çayi Örneği). Jeodezi Jeoenformasyon ve Arazi Yönetimi Dergisi 99(2):11

    Google Scholar 

  • Behrendt H, Opitz D (2000) Retention of nutrients in river systems dependence on specific runoff and hydraulic load. Hydrobiologia 410:111–122

    Article  Google Scholar 

  • Behrendt H, Venohr M, Hirt U, Hofmann J, Opitz D, Gericke A (2007) The Model System MONERIS, Version 2.0. User’s Manual. Berlin

  • Borah DK, Bera M (2003) Watershed-scale hydrological and nonpoint-source pollution models: review of mathematical bases. Am Soc Agric Eng 46(6):1553–1566

    Article  Google Scholar 

  • Brown LC, Barnwell TO (1987) The enhanced stream water quality models Qual2E and Qual2E-UNCAS documentation and user manual. Environmental Research Laboratory Office of Research and Development US Environmental Protection Agency, Athens

  • Celebi G (1974) Orta anadolu Guney Bolgesi topraklarının fosfor durumu ve bu bolge topraklarinda fosfor ihtiyaclarinin tayininde kullanilacak metodlar uzerinde bir arastirma. Ankara Universitesi

  • Chapra SC (1997) Surface water quality modeling. Mc Grw Hill, New York, p 538

    Google Scholar 

  • EIEI (2006) Türkiye akarsularında süspanse sediment gözlemleri yıllığı (31.12.5) = Suspended sediment data for surface waters in Turkey, p 453. Ankara

  • Erturk A, Gurel M, Varol E, Ekdal A, Baloch M, Dikerler T, Seker DZ (2007) Analysis and modelling of land-based nutrient pollution by watershed models coupled with GIS : a case study from Turkey. Water Sci Technol 55(3):115–122. doi:10.2166/wst2007.079

    Article  Google Scholar 

  • Gerlinger KU, Scherer U (1997) Quantifizierung und Modellierung des Feststoff- und Phosphataustrages von landwirtschaftlichen Nutzflächen. Mitt Dtsch Bodenkundl Ges 83:419–422

    Google Scholar 

  • Göncü S, Albek E (2009) Seydi Suyu’nda Yaygın Fosfor Kaynaklarının Qual2EU ile Modellenmesi. Anadolu Universitesi Bilim ve Teknoloji Dergisi 10(2):525–535

    Google Scholar 

  • Guildford SJ, Hecky RE (2000) Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnol Oceanogr 45(6):1213–1223. doi:10.4319/lo.2000.45.6.1213

    Article  Google Scholar 

  • Guse B, Bronstert A, Rode M, Tetzlaff B, Wendland F (2007) Application of two phosphorus models with different complexities in a mesoscale river catchment. Adv Geosci 11:77–84

    Article  Google Scholar 

  • Hadjikakou M, Whitehead PG, Jin L, Futter M, Hadjinicolaou P, Shahgedanova M (2011) Modelling nitrogen in the Yeşilirmak River catchment in Northern Turkey: impacts of future climate and environmental change and implications for nutrient management. Sci Total Environ 409(12):2404–2418. doi:10.1016/j.scitotenv.2011.02.038

    Article  Google Scholar 

  • IPCC (2008) Climate change and water. Geneva. Retrieved from http://www.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf

  • Kacar B (1965) Çukurova Bölgesi Topraklarının bazı fiziksel ve kimyasal özellikleri-A.U. Ziraat Fakültesi Yıllıgı, pp 18–44. Ankara

  • Kacar Burhan, Katkat V (1997) Tarımda Fosfor, 1st edn. Bursa Ticaret Odasi Yayınları, Bursa

    Google Scholar 

  • Karpuzcu M, Wendland F, Kocal M, Tetzlaff B, Pekdeger A, Oncel S, Voigt H, et al (2006) Preliminary investigation on integrated modelling of nutrient loads in catchment areas. A case study: the Porsuk reservoir catchment. In: Proceeding of the tenth international specialised conference on diffuse pollution and sustainable basin management (p. CD–ROM, 9 p). Istanbul

  • Kovacs A, Honti M, Zessner M, Eder A, Clement A, Blöschl G (2012) Identification of phosphorus emission hotspots in agricultural catchments. Sci Total Environ 433:74–88. doi:10.1016/j.scitotenv.2012.06.024

    Article  Google Scholar 

  • Kunkel R, Wendland F (2002) The GROWA98 model for water balance analysis in large river basinsÐthe river Elbe case study. J Hydrol 259:152–162

    Article  Google Scholar 

  • Mainston CP, Parr W (2002) Phosphorus in rivers–ecology and management. Sci Total Environ 282–283, 25–47. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11846073

  • Ministry of Environment and Forest Wastewater Treatment Plant Technical Notification Procedures, Pub. L. No. 27527 (2010). Official gazette

  • Mirchi A, Watkins D, Madani K (2009) Modeling for watershed planning, management and decision making. In: Vaughn JC (ed). Watersheds: management, restoration and environmental. Nova Science Publishers, Inc., New York

  • Molot LA, Dillon PJ (1993) Nitrogen mass balances and denitrification rates in central Ontario Lakes. Biogeochemistry 20:195–212

    Article  Google Scholar 

  • Muhammetoglu A, Muhammetoglu H, Oktas S, Ozgokcen L, Soyupak S (2005) Impact assessment of different management scenarios on water quality of Porsuk river and dam system—Turkey. Water Resour Manage 19(2):199–210. doi:10.1007/s11269-005-3473-z

    Article  Google Scholar 

  • Myung GN, Yu MJ (2002) Application of small community sewer systems for improwing the quality of water resource in Korea. In: Ozturk I, Tanik A (eds) fifth specialised conference on small water and wastewater treatment systems, 24–26 September 2002, pp 145–152. Istanbul

  • OSPAR (1998). Principles of the comprehensive study on riverine inputs and direct discharges (RID

  • Ozturk, R. (2007). Porsuk Cayi Çevre Sorunları ve Bunların Çözümlenmesinde Havza Yönetimi Önerileri. Çukurova Üniversitesi

  • Rao NS, Easton ZM, Schneiderman EM, Zion MS, Lee DR, Steenhuis TS (2009) Modeling watershed-scale effectiveness of agricultural best management practices to reduce phosphorus loading. J Environ Manage 90(3):1385–1395. doi:10.1016/j.jenvman.2008.08.011

    Article  Google Scholar 

  • Reynolds CS, Davies PS (2001) Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biol Rev Camb Philos Soc 76(1): 27–64. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11325053

  • Romshoo SA, Muslim M (2011). Geospatial modeling for assessing the nutrient load of a Himalayan lake, pp 1269–1282. doi:10.1007/s12665-011-0944-9

  • Saloranta TM, Kamari J, Seppo R, Malve O (2003) Benchmark criteria: a tool for selecting appropriate models in the field of water management. Environ Manage 32(3):322–333. doi:10.1007/s00267-003-0069-3

    Article  Google Scholar 

  • Sarikaya HZ, Sevimli MF, Koyuncu I, Yuksel E (2002) Joint operation of small wastewater treatment plants in Southern Turkey. In: Ozturk I, Tanik A (eds) Fifth specialised conference on small water and wastewater treatment systems, 24–26 September 2002, pp 127–136. Istanbul

  • Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science (New York, NY) 195(4275):260–262. doi:10.1126/science.195.4275.260

    Article  Google Scholar 

  • Schoumans O, Mol-Dijkstra J, Roest C (2000) Agricultural and environmental methodologies to describe nonpoint source phosphorus pollution. Agricultural effects on ground and surface waters: research at the edge of science and society, pp 207–211. IAI IS, Wageningen

  • Sharpley AN (1980) The enrichment of soil phosphorus in runoff sediments. J Environ Qual 9(3):521–526

    Article  Google Scholar 

  • Sharpley AN (1985) The selective erosion of plant nutrients in RunoW. Soil Sci Soc Am J 49:1527–1534

    Article  Google Scholar 

  • Shilton AN, Elmetri I, Drizo A, Pratt S, Haverkamp RG, Bilby SC (2006) Phosphorus removal by an “active” slag filter-a decade of full scale experience. Water Res 40(1):113–118. doi:10.1016/j.watres.2005.11.002

    Article  Google Scholar 

  • SHW (1980) Protection of inland water resources-pilot project: Porsuk stream, p 24. Ankara

  • Siewers U, Tarvainen T, Reimann C (2003) Agricultural soils in Northern Europe: a geochemical atlas. In: Reimann C, Siewers U, Tarvainen T, Bityukova L, Eriksson J, Giucis A, Gregorauskiene V, Lukashev VK, Matinian NN, Pasieczna A (eds), p 35. ISBN 978-3-510-95906-8

  • Tchobanoglous G, Burton FL (2003) Wastewater engineering: treatment, disposal, and reuse. Metcalf and Eddy, McGraw-Hill Series in Water Resources and Environmental Engineering, New York

  • Tetzlaff B (2004). Grundlagen für eine nachhaltige Bewirtschaftung von Grundwasserressourcen in der. Research Centre Juelich

  • Tetzlaff B (2006) Die Phosphatbelastung großer Flusseinzugsgebiete aus diffusen und punktuellen Quellen, p 301. Research Centre Juelich, Juelich

  • Tetzlaff B, Wendlan F (2006) P-Pollution in a heavily urbanized river basin from point and diffuse sources—the river Ruhr case study (Germany). In: Proceedings tenth specialised conference on diffuse pollution and sustainable basin management, Istanbul

  • Tetzlaff B, Wendland F (2007) Sediment dynamics and pollutant mobility in rivers. In: Westrich B, Förstner U (eds), pp 206–215. Springer-Verlag, Berlin

  • Tetzlaff Björn, Wendland F (2012) Modelling Sediment input to surface waters for German states with MEPhos: methodology, sensitivity and uncertainty. Water Resour Manage 26(1):165–184. doi:10.1007/s11269-011-9911-1

    Article  Google Scholar 

  • Tetzlaff B, Kreins P, Kunkel R, Wendland F (2007) Area-differentiated modelling of P-fluxes in heterogeneous macroscale river basins. Water Sci Technol 55(3):123–131

    Article  Google Scholar 

  • Tetzlaff B, Vereecken H, Kunkel R, Wendland F (2009) Modelling phosphorus inputs from agricultural sources and urban areas in river basins. Environ Geol 57(1):183–193. doi:10.1007/s00254-008-1293-1

    Article  Google Scholar 

  • TSI (2010) Retrieved from http://www.turkstat.gov.tr

  • UNEP (2007) Approaches to the assesment of eutrophication in mediterranean coastal waters (first draft). Athens. Retrieved from http://195.97.36.231/acrobatfiles/07WG321_Inf6_eng.pdf

  • Venohr M, Hirt U, Hofmann J, Opitz D, Gericke A, Wetzig A, Ortelbach K et al (2009) The Model System MONERIS Version 2.14.1vba. Manual. Berlin

  • Walker WW (1999) Simplified procedures for eutrophication assessment and prediction: user manual, p 239. Massachusetts

  • Wischmeier WH, Smith DD (1978). Predicting rainfall erosion losses—a guide to conservation planning, p 57. US Department of Agriculture, Washington, DC

  • Wu L, Long T-Y, Cooper WJ (2011) Simulation of spatial and temporal distribution on dissolved non-point source nitrogen and phosphorus load in Jialing River Watershed, China. Environ Earth Sci 65(6):1795–1806. doi:10.1007/s12665-011-1159-9

    Article  Google Scholar 

  • Wu L, Xia TL, Ma LX (2013) Modeling impacts of sediment delivery ratio and land management on adsorbed non-point source nitrogen and phosphorus load in a mountainous basin of the Three Gorges reservoir area, China, pp 1405–1422. doi:10.1007/s12665-013-2227-0

  • Yuan Z, Shi J, Wu H, Zhang L, Bi J (2011) Understanding the anthropogenic phosphorus pathway with substance flow analysis at the city level. J Environ Manage 92(8):2021–2028. doi:10.1016/j.jenvman.2011.03.025

    Article  Google Scholar 

Download references

Acknowledgments

This study was part of a PhD thesis supported by the Helmholtz Association and The Scientific and Technological Research Council of Turkey (TUBITAK) with the agreement of German–Turkish bilateral cooperation. The authors would like to thank to Dr. M.S. Oncel for his valuable advices on soil sampling and analysing. Authors would also like to thank the Kutahya City Municipality for providing data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Celen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celen, M., Karpuzcu, M., Onkal Engin, G. et al. Modelling total phosphorus input pathways in the Porsuk reservoir catchment in Turkey. Environ Earth Sci 72, 5019–5034 (2014). https://doi.org/10.1007/s12665-014-3371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3371-x

Keywords