Skip to main content
Log in

Extreme rainfall events: evaluation with different instruments and measurement reliability

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

With regard to extreme events, it is well documented that an intensity of about 1 mm/min already represents an extreme intensity. Under alpine conditions, a precipitation event with an intensity of 3 mm/min has occurred. Therefore, the rain gauges in this region have to be able to measure in this and even in higher intensity ranges. This study deals with basic automated tipping-bucket rain (TBR) gauge and Bulk precipitation samplers, which are able to hold more than 95 % of the cumulative rainfall, that are verified within the space of the week without losses during the extreme events and with minimal evaporation loss. Bulk samplers collected more rainfall than TBR gauges in 110 of 221 extreme events analysed over the past 10 years. In 17 extreme events, an underestimation greater than 10 % was evaluated. The objective was to single out the counting errors associated with TBR gauge, during extreme events, so as to help the understanding of the measured differences between instruments in the field. We want to determine whether the automated precipitation gauge can provide a reliable and precise measurement of precipitation with particular interest regarding heavy and extreme events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Allis JA, Harris B, Sharp AL (1963) A comparison of performance of five rain-gage installations. J Geophys Res 86:4723–4729

    Article  Google Scholar 

  • Calder R, Kidd CHR (1978) A note on the dynamic calibration of tipping-bucket gauges. J Hydrol 39:383–386

    Article  Google Scholar 

  • Ciampittiello M (1999) I livelli del Lago Maggiore: una grande risorsa da gestire un problema da affrontare. Alberti Editore

  • Ciampittiello M (2009) Le precipitazioni atmosferiche nell’areale del Lago Maggiore. Atti del Convegno I laghi Maggiore e Lugano: Quale futuro? 18 ottobre 2008 Gazzada (VA). CIPAIS. Franco Angeli

  • Galloway JN, Likens GE (1976) Calibration of collection procedures for the determination of precipitation chemistry. Water Air Soil Poll 6:241–258

    Article  Google Scholar 

  • Galloway JN, Likens GE (1977) The collection of precipitation for chemical analysis. Tellus 30:71–82

    Article  Google Scholar 

  • Habib E, Krajewski WF, Kruger A (2001) Sampling error of tipping-bucket rain gauge measurement. J Hydrol Eng 6(2):159–166

    Article  Google Scholar 

  • Habib E, Meselhe EA, Aduvala AV (2008) Effect of local errors of tipping-bucket rain gauges on rainfall-runoff simulations. J Hydrol Eng 13(6):488

    Article  Google Scholar 

  • Humphrey MD, Istok JD, Lee JY, Hevesi JA, Flint AL (1997) A new method for automated calibration of tipping-bucket rain gauges. J Atmos Ocean Technol 14:1513–1519

    Article  Google Scholar 

  • CESI Centro Elettrotecnico Sperimentale Italiano (2004) Monitoraggio delle deposizioni atmosferiche e calcolo del trend SCENARI/MONAMB/WP3/Milestone 3.2. Rapporto 1/1 della Milestone

  • La Barbera P, Lanza LG, Stagi L (2002) Tipping bucket mechanical errors and their influence on rainfall statistics and extremes. Water Sci Technol 45(2):1–9

    Google Scholar 

  • Lanza LG, Stagi L (2009) High resolution performances of catching type rain gauges from the laboratory phase of the WMO field intercomparison of rain intensity gauges. Atmos Res 94(4):555–563

    Article  Google Scholar 

  • Lanza LG, Vuerich E (2009) The WMO field intercomparison of rain intensity gauges. Atmos Res 94:534–543

    Article  Google Scholar 

  • Lombardo F, Stagi L (2004) Pluviometri a bascula: correzione degli errori strumentali e taratura della strumentazione. Rivista Ligure di Meteorologia. www.nimbus.it/liguria/rlm39/copertina/html

  • Maksimović Č, Bužek L, Petrović J (1991) Corrections of rainfall data obtained by tipping bucket rain gauges. Atmos Res 27:45–53

    Article  Google Scholar 

  • Marsalek J (1981) Calibration of the tipping bucket raingauge. J Hydrol 53:343–354

    Article  Google Scholar 

  • Molini A, La Barbera P, Lanza LG, Stagi L (2001) Rainfall intermittency and the sampling error of tipping-bucket rain gauges. Phys Chem Earth (C) 26(10–12):732–742

    Google Scholar 

  • Molini A, La Barbera P, Lanza LG, Stagi L (2002) L’errore sistematico meccanico dei pluviometri a vaschette basculanti: ricostruzione e correzione delle serie storiche. 28° Convegno di Idraulica e Costruzioni idrauliche. Potenza 16–19 settembre

  • Molini A, Lanza LG, La Barbera P (2005a) The impact of tipping-bucket raingauge measurement errors on design rainfall for urban-scale applications. Hydrol Process 19:1073–1088

    Article  Google Scholar 

  • Molini A, Lanza LG, La Barbera P (2005b) Improving the uncertainty of rain intensity records by disaggregation techniques. Atmos Res 77:203–217

    Article  Google Scholar 

  • Mosello R, Marchetto A, Tartari GA (1988) Bulk and wet atmospheric deposition chemistry at Pallanza (N. Italy). Water Air Soil Pollut 42:137–151

    Article  Google Scholar 

  • Ntegeka V, Willems P (2008) Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium. Water Resour Res 44:W07402. doi:10.1029/2007WR006471

    Article  Google Scholar 

  • Rogora M, Mosello R, Arisci S, Brizzio M, Barbieri A, Balestrini R, Waldner P, Schmitt M, Stähli M, Thimonier A, Kalina M, Puxbaum H, Nickus U, Ulrich E, Probst A (2006) An overview of atmospheric deposition chemistry over the Alps: present status and long-term trends. Hydrobiologia 562:17–40

    Article  Google Scholar 

  • Russo M, De Blasio A, Fornaciari C, Di Loreto E, Liperi L (1997) Norme tecniche per la raccolta e l’elaborazione dei dati Idrometeorologici—Parte I—Dati meteorologici a fini idrologici. Presidenza del Consiglio dei Ministri Dipartimento per i Servizi Tecnici Nazionali. Servizio Idrogafico e Mareografico Nazionale. Istituto Poligrafico e Zecca dello Stato

  • Siek LC, Burges SJ, Steiner M (2007) Challenges in obtaining reliable measurements of point rainfall. Water Resour Res 43:W01420. doi:10.1029/2005WR004519

    Google Scholar 

  • Smith RL (1987) Estimating tails of probability distributions. Ann Stat 15:1174–1207

    Article  Google Scholar 

  • Tartari GA, Arisci S, Brizzio MC, Marchetto A, Mosello R, Pranzo A (2002) Manuale per le operazioni di campionamento. Report CNR-ISE. 02-02

  • Tokay A, Hartmann P, Battaglia A, Gage KS, Clark WL, Williams CR, (2008) A field study of reflectivity and Z-R relations using vertically pointing radars and disdrometers. J Atmos Ocean Tech 22. doi:10.1175/2008JTECHA1163.1

  • Tokay A, Bashor PG, McDowell VL (2010) Comparison of rain gauge measurements in the mid-atlantic region. J Hydrometeorol 11(2):553–565

    Article  Google Scholar 

  • Tropeano D, Turconi L (2004) The Marderello catchment (Western Alps, Italy): a ten-year survey on geomorphodynamical processes with special regard to debris flows, ERB2004—Euromediterranean conference: progress in surface and subsurface water studies at the plot and small basin scale. 13–17 ottobre 2004, Torino, pp 288–292

  • Turconi L, Tropeano D, Gabriele S (2008) Debris flows in the Marderello catchment in Summer 2005 (Cenischia Valley, Western Italian Alps): a critical rainfall-process analysis, Wildbach und Lawinenverbau, 72, Heft 158, pp 42–61

  • Vasvári V (2005) Calibration of tipping-bucket rain gauges in the Graz urban research area. Atmos Res 77:18–28

    Article  Google Scholar 

  • Vuerich E, Monesi C, Lanza LG, Stagi L, Lanzinger E (2009) The WMO field intercomparison of rainfall intensity (RI) gauges in Vigna di Valle (Italy), October 2007–April 2009: relevant aspects and results. TECO-2010 Helsinki, Finland, St. Petersburg, Russian Federation, 28–29 November 2008

  • Wilks DS (1995) Statistical methods in the atmospheric sciences: an introduction. Academic Press, New York, p 467

    Google Scholar 

  • WMO World Meteorological Organisation (2006) Laboratory intercomparison of rainfall intensity gauges—instruments and observing methods, report no. 84. 2006—WMO/TD—no 1304

  • WMO World Meteorological Organisation (2008) Guide to meteorological instruments and methods of observation. WMO-N° 8

  • WMO World Meteorological Organisation (2009) Instrument and observing methods. WMO field intercomparison of rainfall intensity gauges—instruments and observing methods, report n° 99. 2009—WMO/TD—N° 1504

  • WMO World Meteorological Organisation (2010) Commission for instruments and methods of observation—fifteenth session, Helsinki 2–8 September 2010. WMO n° 1064. Abridged final report with resolutions and recommendations

Download references

Acknowledgments

We would like to thank Mrs. Lindsay Schwarting for the careful language revision of the manuscript. We are grateful to the anonymous reviewers whose suggestions allowed us to improve the presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmi Saidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidi, H., Ciampittiello, M., Dresti, C. et al. Extreme rainfall events: evaluation with different instruments and measurement reliability. Environ Earth Sci 72, 4607–4616 (2014). https://doi.org/10.1007/s12665-014-3358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3358-7

Keywords

Navigation