Skip to main content
Log in

Interpreting CO2–SIc relationship to estimate CO2 baseline in limestone aquifers

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Saturation index with respect to calcite (SIc) and equilibrium CO2 partial pressure are important parameters to study groundwater in limestone aquifers. Aside from their use in time series, CO2 and SIc are used to estimate the baseline of CO2 in the vadose zone. The objective of this paper is to present conceptual examples on the use of the CO2–SIc relationship to have new information from usual parameters. Case study was considered as an example of use from Cussac site, a limestone aquifer in southwest of France. The result showed that CO2 baseline in unsaturated zone is found close to 25,000 ± 1,000 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

[A]:

Ionic activity of A species

Ca2+ :

Calcium

K 0 :

Constant of Henry for gas dissolution

K 1 :

First ionisation constant

K 2 :

Second ionisation constant

K c :

Calcite dissolution constant

γ A :

Ionic activity coefficient of A species

HCO3 :

Bicarbonate

Pco2 :

Partial pressure of CO2

Pco2eq:

Equilibrium Pco2

Pco2sat:

Saturation Pco2, a specific value of Pco2eq, defining the air Pco2 baseline

SIc:

Saturation index with respect to calcite

References

  • Bono P, Dreybrodt W, Errcole S, Percopo C, Vosbeck K (2001) Inorganic calcite precipitation in tartare karstic spring (Lazio, central Italy): field measurement and theoretical prediction on depositional rates. Environ Geol 41:305–313

    Article  Google Scholar 

  • Drake J, Harmon RS (1973) Hydrochemical environments of carbonate terrains. Water Resour Res 9:949–957

    Article  Google Scholar 

  • Dreybrodt W, Einsenlohr L, Madry B, Ringer S (1997) Precipitation kinetics of calcite in the system CaCO3–H2O–CO2: the conversion to CO2 by the slow process H+ + HCO3  → CO2 + H2O as a limiting steps. Geochim Cosmochim Acta 61:3897–3904

    Article  Google Scholar 

  • Faimon J, Ličbinská M, Zajíček P (2012a) Relationship between carbon dioxide in Balcarka Cave and adjacent soils in the Moravian Karst region of the Czech Republic. Int J Speleol 41:17–28

    Article  Google Scholar 

  • Faimon J, Ličbinská M, Zajíček P, Sracek O (2012b) Partial pressures of Co2 in epikarstic zone deduced from hydrogeochemistry of permanent drips, the Moravian Karst, Czech Republic. Acta Carsologica 41:47–57

    Google Scholar 

  • Fairchild IJ, Borsato A, Tooth AF, Frisia S, Hawkesworth CJ, Huang Y, McDermott F, Spiro B (2000) Controls on trace element Sr–Mg compositions of carbonate cave waters: implications for speleothem climatic records. Chem Geol 166:255–269

    Article  Google Scholar 

  • Ford D, Williams P (2007) Karst hydrogeology and geomorphology, 7th edn. Wiley, NY, p 562 ISBN:978-0-470-84997-2

    Book  Google Scholar 

  • Herman J, Lorah M (1986) CO2 outgassing and calcite precipitation in falling Spring Creek, Virginia, USA. Chem Geol 62:251–262

    Article  Google Scholar 

  • Johnson RH, DeWitt E, Arnold LR (2012) Using hydrogeology to identify the source of groundwater to Montezuma Well, a natural spring in Central Arizona, USA: part 1. Environ Earth Sci 67:1821–1835

    Article  Google Scholar 

  • Karimi H, Raesi E, Bakalowicz M (2005) Characterising the main karst aquifers of the Alvand basin, northwest of Zagros, Iran, by a hydrogeochemical approach. Hydrogeol J 13:787–799

    Article  Google Scholar 

  • Langelier WF (1936) The analytical control of anti-corrosion water treatment. J Am Waterworks Assoc 28:1500–1521

    Google Scholar 

  • Leybourne ML, Betcher RN, McRitchie WD, Kaszycki CA, Boyle DR (2009) Geochemistry and stable geochemistry and stable isotopic composition of tufa waters and precipitates from the Interlake Region, Manitoba, Canada: constraints on groundwater origin, calcitization, and tufa formation. Chem Geol 260:221–233

    Article  Google Scholar 

  • Li Q, Sun H, Han J, Liu Z, Yu L (2008) High-resolution study on the hydrochemical variations caused by the dilution of precipitation in the epikarst spring: an example spring of Landiantang at Nongla, Mashan, China. Environ Geol 54:347–354

    Article  Google Scholar 

  • Liu Z, Svensson U, Dreybrodt W, Daoxian Y, Buhmann D (1995) Hydrodynamic control of inorganic calcite precipitation in Huanglong Ravine, China: field measurements and theoretical prediction of deposition rates. Geochim Cosmochim Acta 59:3087–3097

    Article  Google Scholar 

  • Liu Z, Li Q, Sun H, Wang J (2007) Seasonal, diurnal and storm-scale hydrochemical variations of typical springs in subtropical karst areas of SW China: soil CO2 and dilution effects. J Hydrol 337:207–223

    Article  Google Scholar 

  • Mattey DP, Fairchild IJ, Atkinson TC, Latin JP, Ainsworth M, Durell R (2010) Seasonal microclimate control of calcite fabrics, stable isotopes and trace elements in modern speleothem from St Michaels cave, Gibraltar. Geol Soc Lond 336:323–344

    Article  Google Scholar 

  • Parkhurst DL (1995) User’s guide to PHREEQC A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations Report 95–4227

  • Pasvanoglu S, Gultekin F (2012) Hydrogeochemical study of the Terme and Karakurt thermal and mineralized waters from Kirsehir Area, central Turkey. Environ Earth Sci 66:169–182

    Article  Google Scholar 

  • Peyraube N, Lastennet R, Denis A (2012) Geochemical evolution of groundwater in the unsaturated zone of a karstic massif, using the Pco2–SIc relationship. J Hydrol 430:13–24

    Article  Google Scholar 

  • Peyraube N, Lastennet R, Denis A, Malaurent P (2013) Estimation of epikarst air Pco2 using measurements of water D13CTDIC, cave air Pco2 and D13Cco2. Geochim Cosmochim Acta 118:1–17

    Article  Google Scholar 

  • Plummer LN, Busenberg E (1982) The solubility of calcite, aragonite and waterite in CO2–H2O solutions between 0 and 90 °C, and evaluation of the aqueous model of the system CaCO3–CO2–H2O. Geochim Cosmochim Acta 46:1011–1040

    Article  Google Scholar 

  • Plummer LN, Parkhurst DL, Kosiur DR (1975) MIX2, a computer program for modeling chemical reactions in natural waters. U.S. Geological Survey Water-Resources Investigations Report 61

  • Riechelmann DFC, Schröder-Ritzrau A, Scholz D, Fohlmeister J, Spötl C, Richter DK, Mangini A (2011) Monitoring Bunker Cave (NW Germany): a prerequisite to interpret geochemical proxy data of speleothems from this site. J Hydrol 409:682–695

    Article  Google Scholar 

  • Roberge J (1989) Géomorphologie du karst de la Haute-Saumons, île d’Anticosti, Quebec. Thesis, Université McMaster

  • Shuster ET, White WB (1971) Seasonal fluctuations in the chemistry of limestone spring: a possible means for characterizing carbonate aquifers. J Hydrol 14:93–128

    Article  Google Scholar 

  • Shuster ET, White WB (1972) Source areas and climatic effects in carbonate groundwaters determinated by saturation indices and carbon dioxide pressure. Water Resour Res 8:1067–1073

    Article  Google Scholar 

  • Spötl C, Fairchild IJ, Tooth AF (2005) Cave air control on dripwater geochemistry, Obir Caves (Austria): implications for speleothem deposition in dynamically ventilated caves. Geochim Cosmochim Acta 69:2451–2468

    Article  Google Scholar 

  • Thrailkill J, Robl TL (1981) Carbonate geochemistry of vadose water recharging limestone aquifers. J Hydrol 54:195–208

    Article  Google Scholar 

  • Tooth A, Fairchild IJ (2003) Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip water, Crag Cave, southwest Ireland. J Hydrol 273:51–68

    Article  Google Scholar 

  • Troester JW, White WB (1984) Seasonal fluctuations in the dioxide partial pressure in a cave atmosphère. Water Resour Res 20:53–156

    Google Scholar 

  • Unger-Lindig Y, Merkel B, Schipek M (2010) Carbon dioxide treatment of low density sludge: a new remediation strategy for acidic mining lakes? Environ Earth Sci 60:1711–1722

    Article  Google Scholar 

  • Vesper DJ, White WB (2004) Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA. Hydrogeol J 12:135–143

    Article  Google Scholar 

  • White WB (1997) Thermodynamic equilibrium, kinetics, activation barriers, and reaction mechanisms for chemical reactions in Karst Terrains. Environ Geol 30:46–58

    Article  Google Scholar 

  • Zhao M, Zeng C, Liu Z, Wang S (2010) Effect of different land use/land cover on karst hydrogeochemistry: a paired catchments study of Chenqi and Dengzhanhe, Punding, Guizhou, SW China. J Hydrol 388:121–130

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the DREAL Aquitaine and the DRAC Aquitaine for their funding and support. Financial support was also given by the European project FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Peyraube.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyraube, N., Lastennet, R., Denis, A. et al. Interpreting CO2–SIc relationship to estimate CO2 baseline in limestone aquifers. Environ Earth Sci 72, 4207–4215 (2014). https://doi.org/10.1007/s12665-014-3316-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3316-4

Keywords

Navigation