Environmental Earth Sciences

, Volume 73, Issue 6, pp 2881–2894 | Cite as

Assessment of groundwater contamination in an agricultural peri-urban area (NW Portugal): an integrated approach

  • M. F. Barroso
  • M. J. Ramalhosa
  • A. Olhero
  • M. C. Antão
  • M. F. Pina
  • L. Guimarães
  • J. Teixeira
  • M. J. Afonso
  • C. Delerue-Matos
  • H. I. Chaminé
Thematic Issue

Abstract

The excessive use of pesticides and fertilisers in agriculture has generated a decrease in groundwater and surface water quality in many regions of the EU, constituting a hazard for human health and the environment. Besides, on-site sewage disposal is an important source of groundwater contamination in urban and peri-urban areas. The assessment of groundwater vulnerability to contamination is an important tool to fulfil the demands of EU Directives. The purpose of this study is to assess the groundwater vulnerability to contamination related mainly to agricultural activities in a peri-urban area (Vila do Conde, NW Portugal). The hydrogeological framework is characterised mainly by fissured granitic basement and sedimentary cover. Water samples were collected and analysed for temperature, pH, electrical conductivity, chloride, phosphate, nitrate and nitrite. An evaluation of groundwater vulnerability to contamination was applied (GOD-S, Pesticide DRASTIC-Fm, SINTACS and SI) and the potential nitrate contamination risk was assessed, both on a hydrogeological GIS-based mapping. A principal component analysis was performed to characterised patterns of relationship among groundwater contamination, vulnerability, and the hydrogeological setting assessed. Levels of nitrate above legislation limits were detected in 75 % of the samples analysed. Alluvia units showed the highest nitrate concentrations and also the highest vulnerability and risk. Nitrate contamination is a serious problem affecting groundwater, particularly shallow aquifers, especially due to agriculture activities, livestock and cesspools. GIS-based cartography provided an accurate way to improve knowledge on water circulation models and global functioning of local aquifer systems. Finally, this study highlights the adequacy of an integrated approach, combining hydrogeochemical data, vulnerability assessments and multivariate analysis, to understand groundwater processes in peri-urban areas.

Keywords

Groundwater quality Agricultural activity Vulnerability Urban hydrology NW Portugal 

References

  1. Afonso MJ, Chaminé HI, Carvalho JM, Marques JM, Gomes A, Araújo MA, Fonseca PE, Teixeira J, Marques da Silva MA, Rocha FT (2007) Urban groundwater resources: a case study of Porto City in northwest Portugal. In: Howard KWF (ed): Urban groundwater: meeting the challenge. International Association of Hydrogeologists Selected Papers SP8. Taylor & Francis Group, London, pp 271–287Google Scholar
  2. Afonso MJ (2011) Hidrogeologia e hidrogeoquímica da região litoral urbana do Porto, entre Vila do Conde e Vila Nova de Gaia (NW de Portugal): implicações geoambientais. PhD Dissertation, Instituto Superior Técnico, Universidade Técnica de LisboaGoogle Scholar
  3. Afonso MJ, Chaminé HI, Gomes A, Teixeira J, Araújo MA, Fonseca PE, Carvalho JM, Marques JM, Marques da Silva MA, Rocha F (2004) Cartografia geológica e geomorfológica estrutural da área metropolitana do Porto: implicações na gestão dos recursos hídricos subterrâneos. Xeográfica, Revista de Xeografía, Territorio e Medio Ambiente 4:101–115Google Scholar
  4. Aller L, Bennet T, Lehr JH, Petty RJ (1987) DRASTIC: a standardized system for evaluating groundwater pollution potential using hydrologic settings. US EPA Report, 600/2–87/035, Robert S. Kerr Environmental Research Laboratory, Ada, OKGoogle Scholar
  5. APHA (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, DCGoogle Scholar
  6. Araújo MA, Gomes A, Chaminé HI, Fonseca PE, Gama Pereira LC, Pinto de Jesus A (2003) Geomorfologia e geologia regional do sector de Porto-Espinho (W de Portugal): implicações morfoestruturais na cobertura sedimentar Cenozóica. Cad Lab Xeol Laxe 28:79–105Google Scholar
  7. Assaad FA, LaMoreaux PE, Hughes TH, Wangfang Z, Jordan H (2004) Field methods for geologists and hydrogeologists. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  8. Barrett MH, Hiscock KM, Pedley S, Lerner DL, Tellam JH, French MJ (1999) Marker species for identifying urban groundwater recharge sources: a review and case study in Nottingham, UK. Water Res 33(14):3083–3097. doi:10.1016/S0043-1354(99)00021-4
  9. Candela L, Wallis KJ, Mateos RM (2008) Non-point pollution of groundwater from agricultural activities in Mediterranean Spain: the Balearic Islands case study. Environ Geol 54(3):587–595. doi:10.1007/s00254-007-0853-0 CrossRefGoogle Scholar
  10. Capri E, Civita M, Corniello A, Cusimano G, De Maio M, Ducci D, Fait G, Fiorucci A, Hauser S, Pisciotta A, Pranzini G, Trevisan M, Delgado Huertas A, Ferrari F, Frullini R, Nisi B, Offi M, Vaselli O, Vassallo M (2009) Assessment of nitrate contamination risk: the Italian experience. J Geochem Explor 102:71–86. doi:10.1016/j.gexplo.2009.02.006
  11. Carríngton da Costa J, Teixeira C (1957) Carta Geológica de Portugal na escala de 1/50000. Notícia explicativa da Folha 9‐C (Porto). Serviços Geológicos de Portugal, LisboaGoogle Scholar
  12. Carvalho JM (2006) Prospecção e pesquisa de recursos hídricos subterrâneos no Maciço Antigo Português: linhas metodológicas. PhD Dissertation, Universidade de AveiroGoogle Scholar
  13. Carvalho JM, Espinha Marques J, Afonso MJ, Chaminé HI (2005) O caudal de exploração em captações de água mineral natural e de nascente em rochas cristalinas do maciço antigo português. In: Moreno IZ, Herranz MTG (eds) Rubio RF. Proceedings del I Foro Ibérico sobre Aguas Envasadas y Balnearios, Madrid, pp 133–144Google Scholar
  14. Carvalho JM, Espinha Marques J, Afonso MJ, Chaminé HI (2007) Prospecção e pesquisa de recursos hidrominerais e de água de nascente no Maciço Antigo Português. Boletim de Minas 42(2):161–196Google Scholar
  15. Chaminé HI, Gama Pereira LC, Fonseca PE, Noronha F, Lemos de Sousa MJ (2003) Tectonoestratigrafia da faixa de cisalhamento de Porto–Albergaria-a-Velha–Coimbra–Tomar, entre as Zonas Centro-Ibérica e de Ossa-Morena (Maciço Ibérico, W de Portugal). Cad Lab Xeol Laxe 28:37–78Google Scholar
  16. Chaminé HI, Carvalho JM, Afonso MJ, Teixeira J, Freitas L (2013) On a dialogue between hard-rock aquifer mapping and hydrogeological conceptual models: insights into groundwater exploration. Eur Geol Mag 35:26–31Google Scholar
  17. Cheong J-Y, Hamm S-Y, Lee J-H, Lee K-S, Woo N-C (2012) Groundwater nitrate contamination and risk assessment in an agricultural area, South Korea. Environ Earth Sci 66:1127–1136. doi:10.1007/s12665-011-1320-5 CrossRefGoogle Scholar
  18. Civita MV (1994) Le carte della vulnerabilità degli acquiferi all’inquinamento: teoria & pratica. Pitagora Editrice, BolognaGoogle Scholar
  19. Civita MV (2010) The combined approach when assessing and mapping groundwater vulnerability to contamination. J Water Resour Prot 2:14–28. doi:10.4236/jwarp.2010.21003 CrossRefGoogle Scholar
  20. Civita MV, De Maio M (2000) Valutazione e cartografia automatica della vulnerabilità degli acquiferi all’ inquinamento con il sistema parametrico: SINTACS R5. Pitagora Editrice, BolognaGoogle Scholar
  21. Corniello A, Ducci D, Ruggieri G (2007) Areal identification of groundwater nitrate contamination sources in periurban areas. J Soils Sediments 7(3):159–166. doi:10.1065/jss2007.03.213 CrossRefGoogle Scholar
  22. Correia M, Barroso A, Barroso MF, Soares D, Oliveira MBPP, Delerue-Matos C (2010) Contribution of different vegetable types to exogenous nitrate and nitrite exposure. Food Chem 120:960–966. doi:10.1016/j.foodchem.2009.11.030 CrossRefGoogle Scholar
  23. Denny SC, Allen DN, Journeay JM (2007) DRASTIC-Fm: a modified vulnerability mapping method for structurally controlled aquifers in the southern Gulf Islands, British Columbia, Canada. Hydrogeol J 15:483–493. doi:10.1007/s10040-006-0102-8 CrossRefGoogle Scholar
  24. Di Lorenzo T, Brilli M, Del Tosto D, Galassi DMP, Petitta M (2012) Nitrate source and fate at the catchment scale of the Vibrata River and aquifer (central Italy): an analysis by integrating component approaches and nitrogen isotopes. Environ Earth Sci 67:2383–2398. doi:10.1007/s12665-012-1685-0 CrossRefGoogle Scholar
  25. Eickhout B, Bouwman AF, van Zeijts H (2006) The role of nitrogen in world food production and environmental sustainability. Agric Ecosyst Environ 116:4–14. doi:10.1016/j.agee.2006.03.009 CrossRefGoogle Scholar
  26. Esmaeili A, Moore F, Keshavarzi B (2014) Nitrate contamination in irrigation groundwater. Environ Earth Sci, Isfahan, Iran. doi:10.1007/s12665-014-3159-z Google Scholar
  27. Foster SD (1987) Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In: van Duijvenbooden W, van Waegeningh HG (eds) Vulnerability of soil and groundwater to pollutants, Proceedings and Information. TNO Committee on Hydrological Research, The Hague, pp 69–86Google Scholar
  28. Foster SD (1990) Impacts of urbanisation on groundwater. In: Massing H, Packman J, Zuidema FC (eds) Hydrological processes and water management in urban areas. invited lectures and selected papers of the UNESCO/IHP International Symposium Urban Water'88. IAHS Publication 198, Wallingford, Oxforshire, pp 187–207Google Scholar
  29. Foster SD, Hirata R (1988) Groundwater pollution risk assessment: a methodology using available data. WHO-PAHO/HPE-CEPIS Technical Manual, LimaGoogle Scholar
  30. Foster SD, Hirata R, Gomes D, D’Elia M, Paris M (2002) Groundwater quality protection: a guide for water utilities, municipal authorities, and environment agencies. The World Bank, Washington, D.C.CrossRefGoogle Scholar
  31. Foster SD, Hirata R, Andreo B (2013) The aquifer pollution vulnerability concept: aid or impediment in promoting groundwater protection? Hydrogeol J 21:1389–1392. doi:10.1007/s10040-013-1019-7 CrossRefGoogle Scholar
  32. Francés A, Paralta E, Fernandes J, Ribeiro L (2001) Development and application in the Alentejo region of a method to assess the vulnerability of groundwater to diffuse agricultural pollution: the Susceptibility Index. In: Ribeiro L (ed) Proceedings 3rd International Conference on Future Groundwater Resources at Risk. CVRM, Lisboa, pp 35–44Google Scholar
  33. Gleeson T, VanderSteen J, Sophocleous MA, Taniguchi M, Alley WM, Allen DM, Zhou Y (2010) Groundwater sustainability strategies. Nat Geosci 3:378–379. doi:10.1038/ngeo881 CrossRefGoogle Scholar
  34. Gonçalves C, Esteves da Silva JCG, Alpendurada MF (2006) Chemometric interpretation of pesticide occurrence in soil samples from an intensive horticulture area in north Portugal. Anal Chim Acta 560:164–171. doi:10.1016/j.aca.2005.12.021
  35. Heitor AMF (2000) Contaminação das águas subterrâneas no Norte de Portugal. In: Samper J, Leitão T, Fernández L, Ribeiro L (eds) Las aguas subterráneas en el Noroeste de la Península Ibérica. Textos de las Jornadas, Mesa Redonda y Comunicaciones. A Coruña. AIH‐Grupo Español & APRH. ITGE, Madrid, pp 295–308Google Scholar
  36. IGP—Instituto Geográfico Português (2010) Carta de uso e ocupação do solo de Portugal Continental para 2007 (COS2007): memória descritiva. IGP, LisboaGoogle Scholar
  37. INE—Instituto Nacional de Estatística (2011) Statistical information about Portuguese population: Vila do Conde city. http://www.ine.pt/. Accessed 26 April 2013
  38. IUSS Working Group WRB (2007) World reference base for soil resources 2006, first update 2007. World soil resources reports No. 103. FAO, RomeGoogle Scholar
  39. Jalali M (2011) Nitrate pollution of groundwater in Toyserkan, western Iran. Environ Earth Sci 62:907–913. doi:10.1007/s12665-010-0576-5 CrossRefGoogle Scholar
  40. Kaown D, Koh D-C, Mayer B, Lee K-K (2009) Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, mid-eastern Korea). Agric Ecosyst Environ 132:223–231. doi:10.1016/j.agee.2009.04.004 CrossRefGoogle Scholar
  41. Lorenzo F, Alonso A, Pellicer MJ, Pages JL, Perez-Arlucea M (2007) Historical analysis of heavy metal pollution in three estuaries on the north coast of Galicia (NW Spain). Environ Geol 52:789–802. doi:10.1007/s00254-006-0516-6 CrossRefGoogle Scholar
  42. MA—Ministério do Ambiente (1998) Decreto-Lei nº 236/98, de 1 de Agosto. Diário da República—I Série-A, Nº 176Google Scholar
  43. Monteiro A [coord] (2005) Atlas agroclimatológico do Entre Douro e Minho. Projecto POCTI/GEO/14260/1998Google Scholar
  44. Morris BL, Lawrence ARL, Chilton PJC, Adams B, Calow RC, Klinck BA (2003) Groundwater and its susceptibility to degradation: a global assessment of the problem and options for management. early warning and assessment report series, RS. 03-3. United Nations Environment Programme, Nairobi, KenyaGoogle Scholar
  45. OJEC [Official Journal of the European Communities] (1991) Directive 91/676/EEC of the Council Directive of 12 December 1991, concerning the protection of waters against pollution caused by nitrates from agricultural sources. Official Journal of the European Communities, L 375/1–L 375/8Google Scholar
  46. OJEU [Official Journal of the European Union] (2000) Directive 2000/60/EC of the European parliament and of the council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Union. L 327/1–L 327/72Google Scholar
  47. OJEU [Official Journal of the European Union] (2006) Directive 2006/118/EC of the European parliament and of the council of 12 December 2006 on the protection of groundwater against pollution and deterioration. Official Journal of the European Union. L 372/19–L 372/31Google Scholar
  48. Padovani L,Trevisan M (2002) I nitrati di origine agricola nelle acque sotterranee.Un indice parametrico per l’individuazione di aree vulnerabili. Quad. e Tecn. Di Protez. Ambient., vol. 75. Pitagora editrice, Bologna (In Italian with English extended abstract)Google Scholar
  49. Painho M, Caetano M (2006) Cartografia de ocupação do solo: Portugal continental, 1985‐2000: CORINE Land Cover 2000. Instituto do Ambiente, AmadoraGoogle Scholar
  50. Pedrosa MY (1999) Notícia explicativa da Carta Hidrogeológica de Portugal, à escala 1/200000. Folha 1. Instituto Geológico e Mineiro, LisboaGoogle Scholar
  51. Pedrosa MY, Brites JA, Pereira AP (2002) Carta das fontes e do risco de contaminação da região de Entre‐Douro‐e‐Minho. Folha Sul, escala 1/100000, Nota explicativa. Instituto Geológico e Mineiro, LisboaGoogle Scholar
  52. Pereira E, Ribeiro A, Carvalho GS, Noronha F, Ferreira N, Monteiro JH [coord] (1989) Carta Geológica de Portugal, escala 1/200000. Folha 1. Serviços Geológicos de Portugal, LisboaGoogle Scholar
  53. Razowska-Jaworek L, Sadurski A (2005) Nitrates in groundwater. International Association of Hydrogeologists Selected Papers SP5. Balkema, LondonGoogle Scholar
  54. Ribeiro L (2000) IS: um novo índice de susceptibilidade de aquíferos à contaminação agrícola. Internal report, ERSHA/CVRM, IST, Lisboa, PortugalGoogle Scholar
  55. Rock L, Mayer B (2002) Isotopic assessment of sources and processes affecting sulfate and nitrate in surface water and groundwater of Luxembourg. Isot Environ Health Stud 38(4):191–206. doi:10.1080/10256010208033265 CrossRefGoogle Scholar
  56. Rodvang SJ, Simpkins WW (2001) Agricultural contaminants in quaternary aquitards: a review of occurrence and fate in North America. Hydrogeol J 9:44–59. doi:10.1007/s100400000114 CrossRefGoogle Scholar
  57. Schirmer M, Leschik S, Musolff A (2013) Current research in urban hydrogeology: a review. Adv Water Resour 51:280–291. doi:10.1016/j.advwatres.2012.06.015 CrossRefGoogle Scholar
  58. Silva S, Sousa J, Ramalhosa MJ, Barroso MF, Antão MC, Pina MF, Delerue-Matos C (2006) Incidence of nitrate, nitrite, chloride and phosphate in groundwater in Modivas, Portugal. In: Beleza VM (ed) Proceedings of the International Water Conference, IWC2006. Centro de Estudos de Águas/IDT-ISEP, Porto, pp 557–560Google Scholar
  59. Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67. doi:10.1007/s10040-001-0170-8 CrossRefGoogle Scholar
  60. Stigter TY, Ribeiro L, Carvalho Dill AMM (2006) Application of a groundwater quality index as an assessment and communication tool in agro-environmental policies—two Portuguese case studies. J Hydrol 327:578–591. doi:10.1016/j.jhydrol.2005.12.001
  61. Stigter TY, Carvalho Dill AMM, Ribeiro L (2011) Major issues regarding the efficiency of monitoring programs for nitrate contaminated groundwater. Environ Sci Technol 45:8674–8682. doi:10.1021/es201798g
  62. Struckmeier WF, Margat J (1995) Hydrogeological maps: a guide and a standard legend. International Association of Hydrogeologists ICH 17. Verlag Heinz Heise, HannoverGoogle Scholar
  63. Teixeira C, Medeiros AC (1965) Carta geológica de Portugal na escala 1:50000. Notícia explicativa da folha 9A‐Póvoa de Varzim. Serviços Geológicos de Portugal, LisboaGoogle Scholar
  64. Vrba J, Lipponen A (2007) Groundwater resources sustainability indicators. UNESCO, IHP-VI, Series on groundwater, 14, UNESCO, ParisGoogle Scholar
  65. Vrba J, Zaporozec A (1994) Guidebook on mapping groundwater vulnerability. International Association of Hydrogeologists ICH 16. Verlag Heinz Heise, HannoverGoogle Scholar
  66. Wakida FT, Lerner DN (2005) Non-agricultural sources of groundwater nitrate: a review and case study. Water Res 39:3–16. doi:10.1016/j.watres.2004.07.026 CrossRefGoogle Scholar
  67. Wick K, Heumesser C, Schmid E (2012) Groundwater nitrate contamination: factors and indicators. J Environ Manage 111:178–186. doi:10.1016/j.jenvman.2012.06.030 CrossRefGoogle Scholar
  68. Winter T, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water a single resource. US Geological Survey Circular 1139, USGS, Denver, ColoradoGoogle Scholar
  69. Witkowski A, Kowalczyk A, Vrba J (2007) Groundwater vulnerability assessment and mapping. International Association of Hydrogeologists Selected Papers SP11. Taylor & Francis Group, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. F. Barroso
    • 1
  • M. J. Ramalhosa
    • 1
  • A. Olhero
    • 2
    • 3
  • M. C. Antão
    • 4
  • M. F. Pina
    • 2
    • 3
    • 5
  • L. Guimarães
    • 6
  • J. Teixeira
    • 7
    • 8
  • M. J. Afonso
    • 7
    • 8
  • C. Delerue-Matos
    • 1
  • H. I. Chaminé
    • 7
    • 8
  1. 1.REQUIMTE, Instituto Superior de Engenharia do Porto (ISEP), Politécnico do PortoPortoPortugal
  2. 2.INEB, Instituto de Engenharia BiomédicaUniversidade do PortoPortoPortugal
  3. 3.ISPUP, Instituto de Saúde Pública da Universidade do PortoPortoPortugal
  4. 4.Laboratório de Controlo de Qualidade de Águas e Alimentos, EQUILIBRIUMPortoPortugal
  5. 5.Departamento de Epidemiologia Clínica, Medicina Preditiva e Saúde PúblicaFaculdade de Medicina da Universidade do PortoPortoPortugal
  6. 6.Laboratório de ToxicologiaCIIMAR, Universidade do PortoPortoPortugal
  7. 7.Laboratório de Cartografia e Geologia Aplicada (LABCARGA), DEGInstituto Superior de Engenharia do Porto (ISEP), Politécnico do PortoPortoPortugal
  8. 8.Centro GeoBioTec, Universidade de AveiroAveiroPortugal

Personalised recommendations