Environmental Earth Sciences

, Volume 72, Issue 10, pp 3753–3766 | Cite as

Interactive visual analytics of hydrodynamic flux for the coastal zone

  • Richard L. S. F. George
  • Peter E. Robins
  • Alan G. Davies
  • Panagiotis D. Ritsos
  • Jonathan C. Roberts
Thematic Issue

Abstract

Researchers wish to study the potential impact of sea level rise from climate change, and visual analytic tools can allow scientists to visually examine and explore different possible scenarios from simulation runs. In particular, hydrodynamic flux is calculated to understand the net movement of water; but typically this calculation is tedious and is not easily achieved with traditional visualization and analytic tools. We present a visual analytic method that incorporates a transect profiler and flux calculator. The analytic software is incorporated into our visual analytics tool Vinca, and generates multiple transects, which can be visualized and analysed in several alternative visualizations; users can choose specific transects to compare against real-world data; users can explore how flux changes within a domain. In addition, we report how ocean scientists have used our tool to display multiple-view views of their data and analyse hydrodynamic flux for the coastal zone.

Keywords

Computer applications Physical sciences and engineering Earth and atmospheric sciences 

References

  1. Arsenault R, Ware C, Plumtree M, Martin S, Whitcomb L, Wiley D, Gross T, Bilgili A (2004) A system for visualizing time varying oceanographic 3D data. In: Proceedings of the Oceans 2004. MTS/IEEE Conference, pp 743–747Google Scholar
  2. Brown I, Jude S, Koukoulas S, Nicholls R, Dickson M, Walkden M (2006) Dynamic simulation and visualization of coastal erosion. Comput Environ Urban Syst 30(6):840–860CrossRefGoogle Scholar
  3. Chave A, Arrott M, Smarr L, Orcutt J, Lazowska E, Delaney J, Abbott M (2006) Looking: Cyberinfrastructure for ocean observatories. In: IEEE Fourth International Workshop on Scientific Use of Submarine Cables & Related TechnologiesGoogle Scholar
  4. Cotter CJ, Gorman GJ (2008) Diagnostic tools for 3D unstructured oceanographic data. Ocean Model 20:170–182CrossRefGoogle Scholar
  5. Davies AG, Thorne PD (2008) Advances in the study of moving sediments and evolving seabeds. Surv Geophys 29:1–36CrossRefGoogle Scholar
  6. Douglas BC (1991) Global sea level rise. J Geophys Res Oceans (1978–2012) 96(C4):6981–6992CrossRefGoogle Scholar
  7. Geng Z, Peng Z, SLaramee R, Roberts JC, Walker R (2011) Angular histograms: frequency-based visualizations for large, high dimensional data. IEEE Trans Visual Comput Graph 17(12):2572–2580CrossRefGoogle Scholar
  8. George R, Robbins P, Davies A, Roberts JC (2012) Interactive visual analytics of coastal oceanographic simulation data. In: Rogers HPD (ed) IEEE Symposium on Large-scale data analysis and visualization. Barga R. IEEE Press, PhiladelphiaGoogle Scholar
  9. George RLSF (2013) Explorative coastal oceanographic visual analytics: Oceans of data. PhD thesis, School of Computer Science, Bangor University, Bangor, UKGoogle Scholar
  10. George RLSF, Roberts JC, Davies AG (2010) Using processing to develop iCove: a tool for interactive coastal oceanographic visualization. In: Grimstead IJ, Collomosse JP (eds) Theory and practice of computer graphics, eurographics, pp 99–105Google Scholar
  11. George RLSF, Robins PE, Davies AG, Roberts JC (2013) Visual analytics of the hydrodynamic flux for coastal flooding prediction and management. In: Kolditz O, Rink K, Scheuermann G (eds) Workshop on visualisation in environmental sciences (EnvirVis). Eurographics Association, Leipzig, pp 7–9Google Scholar
  12. Hibbard WL, Anderson J, Foster I, Paul BE, Jacob R, Schafer C, Tyree MK (1996) Exploring coupled atmosphere–ocean models using Vis5D. Int J High Perform Comput Appl 10(2–3):211–222CrossRefGoogle Scholar
  13. Howe B, Lawson P, Bellinger R, Anderson E, Santos E, Freire J, Scheidegger C, Baptista A, Silva C (2008) End-to-end, escience: integrating workflow, query, visualization and provenance at an ocean observatory. In: eScience ’08 IEEE Fourth International Conference, pp 127–134Google Scholar
  14. Huang B, Lin H (1999) GeoVR: a web-based took for virtual reality presentation from 2D GIS data. Comput Geosci 25(10):1167–1175CrossRefGoogle Scholar
  15. Johnston K, Ver Hoef JM, Krivoruchko K, Lucas N (2001) Using ArcGIS geostatistical analyst, vol 380. ESRI, RedlandsGoogle Scholar
  16. Keen TR, Vickery R, Flynn P (2001) Scientific visualisation of sediment dynamics in the bottom boundary layer. In: Proceedings of the Seventh International Conference on Estuarine and Coastal Modeling, pp 71–85Google Scholar
  17. Keim DA, Mansmann F, Stoffel A, Ziegler H (2009) Visual analytics. In: Encyclopedia of Database Systems. Springer, New YorkGoogle Scholar
  18. Kitsiou D, de Madron X, Arnau P (2001) Development of a data visualization and analysis tool to study the particle dynamics in the coastal zone. Mar Pollut Bull 43(7–12):262–269CrossRefGoogle Scholar
  19. Lindstrom P, Koller D, Ribarsky W, Hodges L, den Bosch A, Faust N (1997) An integrated global GIS and visual simulation system. Georgia Institute of Technology technical reportGoogle Scholar
  20. Lipsa DR, Laramee RS, Cox SJ, Roberts JC, Walker R, Borkin MA, Pfister H (2012) Visualization for the physical sciences. Comput Graph Forum 31(8):2317–2347CrossRefGoogle Scholar
  21. Mayer L, Paton M, Gee L, Gardner J, Ware C (2000) Interactive 3D visualization: a tool for seafloor navigation, exploration and engineering. In: OCEANS 2000 MTS/IEEE Conference and Exhibition, vol 2, pp 913–919Google Scholar
  22. McCann MP (2002) Creating 3D oceanographic data visualizations for the web. In: Proceedings of the Seventh International Conference on 3D Web Technology, Web3D ’02, ACM, New York, pp 179–184Google Scholar
  23. Nocke T, Flechsig M, Bohm U (2007) Visual exploration and evaluation of climate related simulation data. In: Proceedings of the 2007 Winter Simulation Conference, WashingtonGoogle Scholar
  24. Rahmstorf S (2010) A new view on sea level rise. Nat Rep Clim Change 4:44–45CrossRefGoogle Scholar
  25. Roberts JC (2007) State of the art: coordinated multiple views in exploratory visualization. In: 5th International Conference on Coordinated and Multiple Views in Exploratory Visualization, pp 61–71. doi:10.1109/CMV.2007.20
  26. Robins PE (2008) Present and future flooding scenarios in the Dyfi Estuary, Wales, UK. Report for the countryside council for wales (number 3), Centre for Applied Marine Sciences, Bangor UniversityGoogle Scholar
  27. Robins PE (2009) Development of a morphodynamic model of the Dyfi estuary to inform future management decisions. Technical report, Bangor University, CAMS Report: CAMS 2009 Countryside Council for WalesGoogle Scholar
  28. Robins PE, Davies AG (2010) Morphological controls in sandy estuaries: the influence of tidal flats and bathymetry on sediment transport. Ocean Dyn 60:503–517CrossRefGoogle Scholar
  29. Robins PE, Davies AG (2011) Application of Telemac-2D and Sisyphe to complex estuarine regions to inform future management decisions. In: XVIIIth Telemac & Mascaret User Club Chatou, France, pp 19–21Google Scholar
  30. Robins PE, Davies AG, Jones R (2011) Application of a coastal model to simulate present and future inundation and aid coastal management. J Coast Conserv 15:1–14CrossRefGoogle Scholar
  31. Simpson J, Vennell R, Souza AJ (2001) The salt fluxes in a tidally-energetic estuary. Estuar Coast Shelf Sci 52:131–142CrossRefGoogle Scholar
  32. Stein RJ, Shih AM, Baker MP, Cerco CF, Noel MR (2000) Scientific visualization of water quality in the Chesapeake Bay. In: Vis ’00: Proceedings of the Conference on Visualization, IEEE Computer Society, pp 509–512Google Scholar
  33. Szalay A, Gray J (2006) Science in an exponential world. Nature 440(7083):413–414CrossRefGoogle Scholar
  34. Thomas JJ, Cook K (2006) A visual analytics agenda. IEEE Comput Graph Appl 26(1):10–13CrossRefGoogle Scholar
  35. Van Someren MW, Barnard YF, Sandberg JA et al (1994) The think aloud method: a practical guide to modelling cognitive processes. Academic Press, LondonGoogle Scholar
  36. Ware C, Pluntree M, Arsenault R, Mayer L, Smith S (2001) GeoZui3D: data fusion for interpreting oceanographic data. MTS IEEE Conf Exhib 3:1960–1964Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Richard L. S. F. George
    • 1
  • Peter E. Robins
    • 2
  • Alan G. Davies
    • 2
  • Panagiotis D. Ritsos
    • 1
  • Jonathan C. Roberts
    • 1
  1. 1.School of Computer ScienceBangor UniversityBangorUK
  2. 2.School of Ocean SciencesBangor UniversityBangorUK

Personalised recommendations