Advertisement

Nanoscale zero-valent iron flakes for groundwater treatment

  • R. KöberEmail author
  • H. Hollert
  • G. Hornbruch
  • M. Jekel
  • A. Kamptner
  • N. Klaas
  • H. Maes
  • K.-M. Mangold
  • E. Martac
  • A. Matheis
  • H. Paar
  • A. Schäffer
  • H. Schell
  • A. Schiwy
  • K. R. Schmidt
  • T. J. Strutz
  • S. Thümmler
  • A. Tiehm
  • J. Braun
Original Article

Abstract

Even today the remediation of organic contaminant source zones poses significant technical and economic challenges. Nanoscale zero-valent iron (NZVI) injections have proved to be a promising approach especially for source zone treatment. We present the development and the characterization of a new kind of NZVI with several advantages on the basis of laboratory experiments, model simulations and a field test. The developed NZVI particles are manufactured by milling, consist of 85 % Fe(0) and exhibit a flake-like shape with a thickness of <100 nm. The mass normalized perchloroethylene (PCE) dechlorination rate constant was 4.1 × 10−3 L/g h compared to 4.0 × 10−4 L/g h for a commercially available reference product. A transport distance of at least 190 cm in quartz sand with a grain size of 0.2–0.8 mm and Fe(0) concentrations between 6 and 160 g/kg (sand) were achieved without significant indications of clogging. The particles showed only a low acute toxicity and had no longterm inhibitory effects on dechlorinating microorganisms. During a field test 280 kg of the iron flakes was injected to a depth of 10–12 m into quaternary sand layers with hydraulic conductivities ranging between 10−4 and 10−5 m/s. Fe(0) concentrations of 1 g/kg (sand) or more [up to 100 g/kg (sand)] were achieved in 80 % of the targeted area. The iron flakes have so far remained reactive for more than 1 year and caused a PCE concentration decrease from 20.000–30.000 to 100–200 µg/L. Integration of particle transport processes into the OpenGeoSys model code proved suitable for site-specific 3D prediction and optimization of iron flake injections.

Keywords

Nanoscale zero-valent iron Reactivity Mobility Ecotoxicology Microbiology Field test Numerical model 

Notes

Acknowledgments

This work is part of the joint project NAPASAN (Nanoparticles for ground water remediation) which was funded by the German Federal Ministry for Education and Research (BMBF) under the Grant Number 03X0097 within the research program NanoNature (Nanotechnologies for Environmental Protection—Value and Impact) which is part of the framework program WING (Material Innovations for Industry and Society).

References

  1. Aktaş Ö, Schmidt KR, Mungenast S, Stoll C, Tiehm A (2012) Effect of chloroethene concentrations and granular activated carbon on reductive dechlorination kinetics and growth of Dehalococcoides spp. Bioresour Technol 103:286–292CrossRefGoogle Scholar
  2. Bonder MJ, Zhang Y, Kiick KL, Papaefthymiou V, Hadjipanayis GC (2007) Controlling synthesis of Fe nanoparticles with polyethylene glycol. J Magn Magn Mater 311:658–664CrossRefGoogle Scholar
  3. Bradford SA, Yates SR, Bettahar M, Simunek J (2002) Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour Res 38:1327Google Scholar
  4. Bradford SA, Simunek J, Bettahar M, van Genuchten MT, Yates SR (2003) Modeling colloid attachment, straining, and exclusion in saturated porous media. Environ Sci Technol 37:2242–2250CrossRefGoogle Scholar
  5. Bradford SA, Simunek J, Bettahar M, van Genuchten MT, Yates SR (2006) Significance of straining in colloid deposition: evidence and implications. Water Resour Res 42:W12S15Google Scholar
  6. Bradford SA, Torkzaban S, Leij F, Simunek J, van Genuchten MT (2009) Modeling the coupled effects of pore space geometry and velocity on colloid transport and retention. Water Resour Res 45:W02414Google Scholar
  7. Bradford SA, Torkzaban S, Simunek J (2011) Modeling colloid transport and retention in saturated porous media under unfavorable attachment conditions. Water Resour Res 47:W10503Google Scholar
  8. Braunbeck T, Boettcher M, Hollert H, Kosmehl T, Lammer E, Leist E, Rudolf M, Seitz N (2005) Towards an alternative for the acute fish LC (50) test in chemical assessment: the fish embryo toxicity test goes multi-species—an update. Altex 22:87Google Scholar
  9. Cullen E, O’Carroll DM, Yanful EK, Sleep B (2010) Simulation of the subsurface mobility of carbon nanoparticles at the field scale. Adv Water Resour 33:361–371CrossRefGoogle Scholar
  10. DIN EN ISO 9277:1995 Determination of the specific surface area of solids by gas adsorption using the BET method; German version DIN ISO 9277:1995; DIN German Institute for Standardization, p 12Google Scholar
  11. DIN EN ISO 15088:2009 Water quality—determination of the acute toxicity of waste water to zebrafish eggs (Danio rerio) (ISO 15088:2007); German version EN ISO 15088:2008. DIN EN ISO 15088. DIN German Institute for Standardization, p 20Google Scholar
  12. DIN EN ISO 6341:2010 Water quality—determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity test (ISO/DIS 6341:2010); German version prEN ISO 6341:2010. DIN EN ISO 6341. DIN German Institute for Standardization, p 33Google Scholar
  13. DIN EN ISO 8692:2010 Water quality—fresh water algal growth inhibition test with unicellular green algae (ISO 8692:2010); German version EN ISO 8692:2010. DIN EN ISO 8692. DIN German Institute for Standardization, p 30Google Scholar
  14. Doong R, Lai Y (2006) Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. Chemosphere 64:371–378CrossRefGoogle Scholar
  15. El Fantroussi S, Mahillon J, Naveau H, Agathos SN (1997a) Introduction and PCR detection of Desulfomonile tiedjei in soil slurry microcosms. Biodegradation 8:125–133CrossRefGoogle Scholar
  16. El Fantroussi S, Mahillon J, Naveau H, Agathos SN (1997b) Introduction of anaerobic dechlorinating bacteria into soil slurry microcosms and nested-PCR monitoring. Appl Environ Microbiol 63(2):806–811Google Scholar
  17. Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926CrossRefGoogle Scholar
  18. El-Temsah YS, Joner EJ (2012) Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere 89:76–82. doi: 10.1016/j.chemosphere.2012.04.020 Google Scholar
  19. European Community (2008) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 (Text with EEA relevance). In: Union OJotE (ed), 1272/2008Google Scholar
  20. Filser J, Arndt D, Baumann J, Geppert M, Hackmann S, Luther EM, Pade C, Prenzel K, Wigger H, Arning J, Hohnholt MC, Koser J, Kuck A, Lesnikov E, Neumann J, Schutrumpf S, Warrelmann J, Baumer M, Dringen R, von Gleich A, Swiderek P, Thoming J (2013) Intrinsically green iron oxide nanoparticles? From synthesis via (eco-)toxicology to scenario modelling. Nanoscale 5:1034–1046. doi: 10.1039/c2nr31652h CrossRefGoogle Scholar
  21. Henn KW, Waddill DW (2006) Utilization of nanoscale zero-valent iron for source remediation—a case study. Remediation 16:57–77. doi: 10.1002/rem.20081 CrossRefGoogle Scholar
  22. Hornbruch G, Strutz T, Dahmke A, Köber R. (in prep.) Simulation of NZVI transport in porous media under variable injection conditionsGoogle Scholar
  23. ISO 11350:2011 Water quality—determination of the genotoxicity of water and waste water—Salmonella/microsome fluctuation test (Ames fluctuation test). ISO 11350. ISO International Organization for Standardization, p 42Google Scholar
  24. Johnson PR, Elimelech M (1995) Dynamics of colloid deposition in porous media—blocking based on random sequential adsorption. Langmuir 11:801–812CrossRefGoogle Scholar
  25. Johnson PR, Sun N, Elimelech M (1996) Colloid transport in geochemically heterogeneous porous media: modeling and measurements. Environ Sci Technol 30:3284–3293CrossRefGoogle Scholar
  26. Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42:896–900CrossRefGoogle Scholar
  27. Ko CH, Elimelech M (2000) The “shadow effect” in colloid transport and deposition dynamics in granular porous media: measurements and mechanisms. Environ Sci Technol 34:3681–3689. doi: 10.1021/es0009323 CrossRefGoogle Scholar
  28. Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67:589–599. doi: 10.1007/s12665-012-1546-x CrossRefGoogle Scholar
  29. Komar PD, Reimers CE (1978) Grain shape effects on settling rates. J Geol 86(2):193–209CrossRefGoogle Scholar
  30. Kuiken T (2010) The project on emerging nanotechnologies and nanoremediation. Environ Earth Sci 60(4):903–907CrossRefGoogle Scholar
  31. Li H, Zhou Q, Wu Y, Fu J, Wang T, Jiang G (2009) Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol and Environ Saf 72:684–692. doi: 10.1016/j.ecoenv.2008.09.027 CrossRefGoogle Scholar
  32. Liu Y, Choi H, Dionysiou D, Lowry GV (2005) Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chem Mater 17:5315–5322CrossRefGoogle Scholar
  33. Löffler FE, Sun Q, Li J, Tiedje JM (2000) 16S rRNA gene-based detection of tetrachloroethene dechlorinating Desulforomonas and Dehalococcoides species. Appl Environ Microbiol 66(4):1369–1374CrossRefGoogle Scholar
  34. Loveland JP, Bhattacharjee S, Ryan JN, Elimelech M (2003) Colloid transport in a geochemically heterogeneous porous medium: aquifer tank experiment and modeling. J Contam Hydrol 65:161–182CrossRefGoogle Scholar
  35. Marsalek B, Jancula D, Marsalkova E, Mashlan M, Safarova K, Tucek J, Zboril R (2012) Multimodal action and selective toxicity of zerovalent iron nanoparticles against cyanobacteria. Environ Sci Technol 46:2316–2323. doi: 10.1021/es2031483 CrossRefGoogle Scholar
  36. Matheson LJ, Tratnyek P (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28:2045–2053CrossRefGoogle Scholar
  37. McDowell-Boyer LM, Hunt JR, Sitar N (1986) Particle transport through porous media. Water Resour Res 22:1901–1921CrossRefGoogle Scholar
  38. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2012) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122CrossRefGoogle Scholar
  39. Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41:284–290CrossRefGoogle Scholar
  40. Phenrat T, Saleh N, Sirk K, Kim H-J (2008) Stabilization of aqueous zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanoparticle Res 10:795–814CrossRefGoogle Scholar
  41. Phenrat T, Long TC, Lowry GV, Veronesi B (2009) Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43:195–200CrossRefGoogle Scholar
  42. Phenrat T, Cihan A, Kim HJ, Mital M, Illangasekare T, Lowry GV (2010) Transport and deposition of polymer-modified Fe0 nanoparticles in 2-d heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings. Environ Sci Technol 44:9086–9093CrossRefGoogle Scholar
  43. Phenrat T, Fagerlund F, Illangasekare T, Lowry GV, Tilton RD (2011) Polymer-modified Fe0 nanoparticles target entrapped NAPL in two dimensional porous media: effect of particle concentration, NAPL saturation, and injection strategy. Environ Sci Technol 45:6102–6109. doi: 10.1021/es200577n CrossRefGoogle Scholar
  44. Rajendra S, Reenkala SM, Anthony N, Ramaraj R (2002) Synergistic corrosion inhibition by the sodium dodecyl sulphate–Zn2+ system. Corros Sci 44:2243–2252CrossRefGoogle Scholar
  45. Reifferscheid G, Maes H, Allner B, Badurova J, Belkin S, Bluhm K, Brauer F, Bressling J, Domeneghetti S, Elad T (2012) International round-robin study on the Ames fluctuation test. Environ Mol Mutagen 53:185–197CrossRefGoogle Scholar
  46. Schmidt K, Stoll C, Tiehm A (2006) Evaluation of 16S-PCR detection of Dehalococcoides at two chloroethene-contaminated sites. Water Sci Technol: Water Supply 6(3):129–136Google Scholar
  47. Smits THM, Devenoges C, Szynalski K, Maillard J, Holliger C (2004) Development of a real-time PCR method for quantification of the three genera Dehalobacter, Dehalococcoides, and Desulfitobacterium in microbial communities. J Microbiol Methods 57:369–378CrossRefGoogle Scholar
  48. Stieber M, Putschew A, Jekel M (2011) Treatment of pharmaceuticals and diagnostic agents using zero-valent iron—kinetic studies and assessment of transformation products assay. Environ Sci Technol 45(11):4944–4950CrossRefGoogle Scholar
  49. Sun N, Elimelech M, Sun NZ, Ryan JN (2001a) A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media. J Contam Hydrol 49:173–199CrossRefGoogle Scholar
  50. Sun N, Sun NZ, Elimelech M, Ryan JN (2001b) Sensitivity analysis and parameter identifiability for colloid transport in geochemically heterogeneous porous media. Water Resour Res 37:209–222CrossRefGoogle Scholar
  51. Sun J, Wang S, Zhao D, Hun FH, Weng L, Liu H (2011) Cytotoxicity, permeability, and inflammation of metal oxide nanoparticles in human cardiac microvascular endothelial cells. Cell Biol Toxicol 27:333–342. doi: 10.1007/s10565-011-9191-9 CrossRefGoogle Scholar
  52. Taghavy A, Costanza J, Pennell KD, Abrioala LM (2010) Effectiveness of nanoscale zero-valent iron for treatment of PCE-DNAPL source zone. J Contam Hydrol 118:128–142CrossRefGoogle Scholar
  53. Tiehm A, Schmidt KR (2011) Sequential anaerobic/aerobic biodegradation of chloroethenes—aspects of field application. Curr Opin Biotechnol 22(3):415–421CrossRefGoogle Scholar
  54. Tiraferri A, Tosco T, Sethi R (2011) Transport and retention of microparticles in packed sand columns at low and intermediate ionic strengths: experiments and mathematical modeling. Environ Earth Sci 63(4):847–859CrossRefGoogle Scholar
  55. Tosco T, Sethi R (2009) MNM1D: a numerical code for colloid transport in porous media: implementation and validation. Am J Environ Sci 5:517–525CrossRefGoogle Scholar
  56. Tosco T, Sethi R (2010) Transport of non-newtonian suspensions of highly concentrated micro- and nanoscale iron particles in porous media: a modeling approach. Environ Sci Technol 44:9062–9068. doi: 10.1021/es100868n0013 Google Scholar
  57. Wang C, Wang L, Wang Y, Liang Y, Zhang J (2012) Toxicity effects of four typical nanomaterials on the growth of Escherichia coli, Bacillus subtilis and Agrobacterium tumefaciens. Environ Earth Sci 65(6):1643–1649CrossRefGoogle Scholar
  58. Yao K-M, Habibian MT, O’Melia CR (1971) Water and waste water filtration. Concepts and applications. Environ Sci Technol 5:1105–1112. doi: 10.1021/es60058a005 CrossRefGoogle Scholar
  59. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  60. Zhao MZ (2013) In situ dechlorination in soil and groundwater using stabilized zero-valent iron nanoparticles: some field experience on effectiveness and limitations. In: Novel solutions to water pollution, Chapter 6, pp 79–96, Chapter doi: 10.1021/bk-2013-1123.ch006, ACS Symposium Series, vol 1123, ISBN13:9780841227545e, ISBN:9780841227552
  61. Zhuang Y, Jin LT, Luthy RG (2012) Kinetics and pathways for the debromination of polybrominated diphenyl ethers by bimetallic and nanoscale zerovalent iron: effects of particle properties and catalyst. Chemosphere 89(4):426–432CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • R. Köber
    • 1
    Email author
  • H. Hollert
    • 2
  • G. Hornbruch
    • 1
  • M. Jekel
    • 3
  • A. Kamptner
    • 4
  • N. Klaas
    • 5
  • H. Maes
    • 2
  • K.-M. Mangold
    • 6
  • E. Martac
    • 7
  • A. Matheis
    • 5
  • H. Paar
    • 3
  • A. Schäffer
    • 2
  • H. Schell
    • 8
  • A. Schiwy
    • 2
  • K. R. Schmidt
    • 8
  • T. J. Strutz
    • 1
  • S. Thümmler
    • 4
  • A. Tiehm
    • 8
  • J. Braun
    • 5
  1. 1.Institute for Geosciences, Christian-Albrechts-University of Kiel (CAU)KielGermany
  2. 2.Institute for Environmental Research (Biology 5)RWTH Aachen UniversityAachenGermany
  3. 3.Technical University of BerlinBerlinGermany
  4. 4.UVR-FIA GmbHFreibergGermany
  5. 5.VEGAS-Research Facility for Subsurface RemediationUniversity of StuttgartStuttgartGermany
  6. 6.DECHEMA-ForschungsinstitutFrankfurtGermany
  7. 7.Fugro Consult GmbHBraunschweigGermany
  8. 8.Department of Environmental BiotechnologyTZW-Water Technology CenterKarlsruheGermany

Personalised recommendations