Skip to main content
Log in

Geoenvironmental appraisal of groundwater quality in Bengal alluvial tract, India: a geochemical and statistical approach

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Groundwater is an essential natural resource which has enormous use throughout the world, but with the enhanced population pressure, its quality and quantity gets affected. Consequently, assessment and categorization of groundwater quality is necessary and the availability of safe water for utilization is to be ensured. The present study was based on groundwater samples, collected over 5,324 km2 from the alluvial tract of Bengal plain, India. Ten geochemical parameters viz. arsenic, pH, total dissolved solids, electrical conductivity, iron, total hardness as calcium carbonate, sulphate, nitrite and depth were analysed, and multivariate statistical analyses were performed on the data set. Factor analysis depicted four factors, which explained 66.57 % of total variability of data. Factor 1 represented high positive loadings on total dissolved solids and electrical conductivity. Factor 2 was associated with depth, arsenic and iron and indicated process of reduction in groundwater. Over extraction of groundwater showed probable relationship with arsenic concentration in groundwater. Parameters of Factor 3 and 4 had been related with agricultural activities and local geological conditions. Further, four clusters observed from hierarchical cluster analysis, assisted in grouping groundwater geochemistry of the region. The results coupled with GIS facilitated in categorizing and mapping the groundwater quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akai J, Izumi K, Fukuhara H, Masuda H, Nakano S, Yoshimura T, Ohfuji H, Md Anawar H, Akai K (2004) Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Appl Geochem 19:215–230

    Article  Google Scholar 

  • APHA (American Public Health Association) (1989) Standard methods for the examination of water and waste waters, 20th edn. APHA, Washington, DC

  • Chanakya HN, Sharathandra HC (2008) Nitrogen pool, flows, impact and sustainability issues of human waste management in the city of Bangalore. Curr Sci 94(11):1447–1454

    Google Scholar 

  • Chapagain SK, Pandey VP, Shrestha S, Nakamur T, Kazama F (2010) Assessment of deep groundwater quality in Kathmandu Valley using multivariate statistical techniques. Water Air Soil Pollut 210:277–288

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology, 2nd edn. Wiley, New York

    Google Scholar 

  • Deshmukh DS, Goswami AB (1973) Geology and groundwater resources of Alluvial areas of West Bengal. Bulletin of Geological Survey of India. Series B, No. 34

  • District Census Hand Book (2001) Murshidabad District, Census of India

  • District Planning Map Series, Murshidabad, West Bengal (2002) National Atlas & thematic mapping organisation. Department of Science & Technology, Government of India

  • District Resource Map (2008) Murshidabad, West Bengal

  • Farnham IM, Singh AK, Stetzenbach KJ, Johannesson KH (2002) Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemometr Intell Lab Syst 60:265–281

    Article  Google Scholar 

  • Forina M, Armanino C, Raggio V (2002) Clustering with dendrograms on interpretation variables. Anal Chim Acta 454:13–19

    Article  Google Scholar 

  • Ghosh T, Kanchan R (2011) Spatio-temporal pattern of groundwater arsenic concentration in thick unconfined aquifer of Murshidabad District, West Bengal, India. Univers J Environ Res Technol 1(3):311–319

    Google Scholar 

  • Giridharan L, Venugopal T, Jayaprakash M (2008) Evaluation of the seasonal variation on the geochemical parameters and quality assessment of the groundwater in the proximity of River Cooum, Chennai, India. Environ Monit Assess 143:161–178

    Article  Google Scholar 

  • Groundwater Information Booklet (2007) District Murshidabad (Arsenic Affected Area) West Bengal. Central Groundwater Board, Eastern Region, Kolkata

    Google Scholar 

  • Güler C, Thyne GD, McCray JE, Turner AK (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J 10:455–474

    Article  Google Scholar 

  • Gupta S, Mahato A, Roy P, Datta JK, Saha RN (2008) Geochemistry of groundwater, Burdwan District, West Bengal, India. Environ Geol 53:1271–1282

    Article  Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2005) Groundwater arsenic contamination on the Ganges Delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. CR Geosci 1–2(337):285–296

    Article  Google Scholar 

  • Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34(3):807–816

    Article  Google Scholar 

  • Hosono T, Ikawa R, Shimada J, Nakano T, Saito M, Onodera S, Lee K, Taniguchi M (2009) Human impacts on groundwater flow and contamination deduced by multiple isotopes in Seoul City, South Korea. Sci Total Environ 407(9):3189–3197

    Article  Google Scholar 

  • Jeffery GH, Bassett J, Mendham J, Denney RC (1989) Vogel’s textbook of quantitative chemical analysis, 5th edn. pp 681–683

  • Kanchan R, Ghosh T (2011) Groundwater arsenic contamination and health status in Nadia District, West Bengal, India. Deccan Geographer 1(49):51–63

    Google Scholar 

  • Kanchan R, Ghosh T (2012) Identification of groundwater arsenic contaminated vulnerability zones in alluvial tract of West Bengal, India. J Energy Environ Carbon Credits 2(1):1–12

    Google Scholar 

  • Khalil HE, Ouafae EH, Gabriel B, Naaila O, Ali B (2008) Heavy metal contamination from mining sites in South Morocco: monitoring metal content and toxicity of soil runoff and groundwater. Environ Monit Assess 136:147–160

    Article  Google Scholar 

  • Kumazawa K (2002) Nitrogen fertilization and nitrate pollution in groundwater in Japan: present status and measures for sustainable agriculture. Nutr Cycl Agroecosyst 2–3(63):129–137

    Article  Google Scholar 

  • Lake IR, Lovett AA, Hiscock KM, Betson M, Foley A, Su¨nnenberg G, Evers S, Fletcher S (2003) Evaluating factors influencing groundwater vulnerability to nitrate pollution: developing the potential of GIS. J Environ Manag (68):315–328

  • Liu CW, Lin KH, Kuo YM (2003) Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Sci Total Environ 313:77–89

    Article  Google Scholar 

  • Mathes SE, Rasmussen TC (2006) Combining multivariate statistical analysis with geographic information systems mapping: a tool for delineating groundwater contamination. Hydrogeol J 14:1493–1507

    Article  Google Scholar 

  • Mencio A, Mas-Pla J (2008) Assessment by multivariate analysis of groundwater-surface water interactions in urbanized mediterranean streams. J Hydrol 353:355–366

    Article  Google Scholar 

  • Mishima Y, Yakada M, Kitagawa R (2010) Evaluation of intrinsic vulnerability to nitrate contamination of groundwater: appropriate fertilizer application management. Environ Earth Sci 63(3):571–580

    Article  Google Scholar 

  • Mukherjee AB, Bhattacharya P (2001) Arsenic in groundwater in Bengal Delta plain: slow poisoning in Bangladesh. Environ Rev 9(3):198–220

    Article  Google Scholar 

  • Oinam JD, Ramanathan AL, Linda A, Singh G (2011) A study of arsenic, iron and other dissolved ion variations in the groundwater of Bishnupur District, Manipur, India. Environ Earth Sci 62:1183–1195

    Article  Google Scholar 

  • Rahim BEE, Yusoff I, Samsudin AR, Yaacob WZW, Rafek AGM (2010) Deterioration of groundwater quality in the vicinity of an active open-tipping site in West Malaysia. Hydrogeol J 18(4):997–1006

    Article  Google Scholar 

  • Ravenscroft P, McArthur JM, Hoque BA (2001) Geochemical and paleohydrological controls on pollution of groundwater by arsenic. In: Chappell W, Abernathy CO, Calderon R (eds) Arsenic exposure, health effects (IV). Elsevier, Oxford, pp 78–83

    Google Scholar 

  • Sawyer CN, McCarthy PL (1967) Chemistry for sanitation engineering. 2nd edn. McGrawHill, New York

  • Schmoll O, Howard G, Chilton J, Chorus I (2006) Protecting groundwater for health: managing the quality of drinking water sources. WHO/IWA, Publishing, UK, London

    Google Scholar 

  • Simeonov V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimtzis Th (2003) Assessment of the surface water quality in Northern Greece. Water Res 37:4119–4124

    Article  Google Scholar 

  • Singh CK, Shashtri S, Mukherjee S (2011) Integrating multivariate statistical analysis with GIS for geochemical assessment of groundwater quality in Shiwaliks of Punjab, India. Environ Earth Sci 62:1387–1405

    Article  Google Scholar 

  • Stüben D, Berner Z, Chandrasekharam D, Karmakar J (2003) Arsenic enrichment in groundwater of West Bengal, India: geochemical evidence for mobilization of as under reducing condition. Appl Geochem 18(9):1417–1434

    Article  Google Scholar 

  • Takamatsu T, Watanabe M, Koshikawa MK, Murata T, Yamamura S, Hayashi S (2010) Pollution of montane soil with Cu, Zn, As, Sb, Pb, and nitrate in Kanto, Japan. Sci Total Environ 408:1932–1942

    Article  Google Scholar 

  • Yakubo BB, Yidana SM, Emmanuel N, Akabzaa T, Asiedu D (2009) Analysis of groundwater quality using water quality index and conventional graphical methods: the Volta region, Ghana. Environ Earth Sci 59:867–879

    Article  Google Scholar 

  • Yammani SR, Reddy TVK, Reddy MRK (2008) Identification of influencing factors for groundwater quality variation using multivariate analysis. Environ Geol 55:9–16

    Article  Google Scholar 

  • Yang YH, Zhou F, Guo HC, Sheng H, Liu H, Dao X, He CG (2010) Analysis of spatial and temporal water pollution patterns in Lake Dianchi using multivariate statistical methods. Environ Monit Assess 170:407–416

    Article  Google Scholar 

  • Yidana SM, Yidana A (2010) Assessing water quality using water quality index and multivariate analysis. Environ Earth Sci 59:1461–1473

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (R K) is thankful to University Grants Commission, New Delhi, India for funding the Major Research Project “Arsenic in Groundwater in West Bengal—A Global Concern: Some Issues and Remedies” [F. No. 33- 79/2007 (SR)] .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolee Kanchan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, T., Kanchan, R. Geoenvironmental appraisal of groundwater quality in Bengal alluvial tract, India: a geochemical and statistical approach. Environ Earth Sci 72, 2475–2488 (2014). https://doi.org/10.1007/s12665-014-3155-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3155-3

Keywords

Navigation