Environmental Earth Sciences

, Volume 72, Issue 6, pp 2163–2171 | Cite as

Technical risks and best available technology (BAT) of hydraulic fracturing in unconventional natural gas resources

  • Hans-Joachim UthEmail author
Original Article


Description of risks associated with (a) the technical installations above ground at the well site, (b) the transport of environmentally hazardous substances on roads and in pipelines, and (c) the technical design of the wellbore that can arise during specified normal operation and any deviations therefrom (accident). The assessment is based on a worst-case scenario approach that allows for definition of the measures necessary to avoid accidents and limit their consequences, in accordance with the state-of-the-art requirements [Best available technology (BAT)]. The measures, thus, defined were then compared with given technical and organizational preventive measures for a typical installation, and the completeness and suitability of these measures were evaluated. The investigation is based on information and documentation that were provided by ExxonMobil Production Deutschland GmbH on selected drilling sites, as well as on the literature. Simulations were run for eight main scenarios and 28 subsidiary scenarios. The state-of-the-art (BAT) and good management practice were defined for measures aimed at preventing drilling site incidents and limiting their effects, and were then compared with and assessed in light of standard practices. The said comparison then formed the basis for the formulation of recommendations aimed at improving protection of the population and environment. The main recommendation is that hydrofracking operations should be conducted in accordance with prevailing chemical industry standards, even if adherence to these requirements is not prescribed by law. This especially pertains to requirements concerning the following: the manner in which substances that are hazardous to water are handled; pipeline requirements for natural gas, backflow water and formation water transport; and instituting modern cultures of safety, including providing information concerning risks and the elaboration of risk management action plans. Recommendations were also made as regards well integrity testing, in view of the mission critical nature of this matter and the need for integrated risk communication.


Unconventional narural gas resources Hydraulic fracturing Best available technology (BAT) Worst case scenarios 


  1. BMA (2010) TRBS 2141 Gefährdungen durch Dampf und Druck, Teil 1-3. Bundesminister für ArbeitGoogle Scholar
  2. BMU (2004) Vollzugshilfe zur Störfall-Verordnung, 2004.
  3. BUND (2010) Störfall-Verordnung vom 8. Juni 2005 i.d.F. v. 8. Juni 2005(BGBl. I S. 1598), Zuletzt geändert durch Artikel 5 Absatz 4 der Verordnung vom 26. November 2010 (BGBl. I S. 1643). BGBLGoogle Scholar
  4. CCPS (2011) Process safety leading and lagging metrics. CCPSGoogle Scholar
  5. Committee for the Prevention of Desasters (1999) Guidelines for quantitative risk assessment (purple book); CPR 18E; VROM, The hague, NLGoogle Scholar
  6. COVO Commission (1981) Risk analysis of six potentially hazardous industrial objects in the Rijnmond area, a pilot study- a report to the public authority. Central environment control agency, RIJNMOND, NLGoogle Scholar
  7. DNV (2013) DNV-RP-U301 Risk Management of Shale Gas, Developments and Operations, 2013.
  8. EU (2005) Guidance on the PREPARATION of a safety report to meet the requirements of directive 96/82/EC as amended by directive 2003/105/EC (SEVESO II); Report EUR 22113 EN, 2005Google Scholar
  9. Ewen C (2012) Informations- und Dialogprozess der ExxonMobil über die Sicherheit und Umweltverträglichkeit der Fracking-Technologie für die Erdgasgewinnung.
  10. Gordalla B, Ewers U, Frimmel FH (2013) Hydraulic fracturing—a toxicological threat for groundwater and drinking water? Environ Earth Sci 70(8):3875–3893CrossRefGoogle Scholar
  11. KAS (2008) KAS-7 Empfehlungen der KAS für eine Weiterentwicklung der Sicherheitskultur—Lehren nach Texas City 2005 (Bericht des Arbeitskreises Texas City). Kommission für Anlagensicherheit.
  12. Kissinger A, Helmig R, Ebigbo A, Class H, Lange T, Sauter M, Heitfeld M, Klünker J, Jahnke W (2013) Hydraulic fracturing in unconventional gas reservoirs—risks in the geological system, Part 2. Environ Earth Sci 70(8):3855–3873CrossRefGoogle Scholar
  13. Lange T, Sauter M, Heitfeld M, Schetelig K, Jahnke W, Kissinger A, Helmig R, Ebigbo A, Class H (2013) Hydraulic fracturing in unconventional gas reservoirs—risks in the geological system, Part 1. Environ Earth Sci 70(8):3839–3853CrossRefGoogle Scholar
  14. LAWA (1990) Muster-Anlagenverordnung (Muster-VAwS) vom 8./9.11.1990 unter Einschluß der Fortschreibung gemäß Beschluß der 116. LAWA-Sitzung am 22./23. März 2001 in Güstrow. Landesarbeitsgemeinschaft WasserGoogle Scholar
  15. LBEG (2005) Merkblatt „Blowoutratenberechnung Sauergasbohrungen. LBEG Rundverfügung 4.72 v. 30.11.2005Google Scholar
  16. Meiners (2012) Fracking in unkonventionellen Lagerstätten in Nordrhein-Westfahlen, Aachen 2012.
  17. Niedersachsen (1993) Richtlinie zur bemessung von löschwasser-rückhalteanlagen beim lagern wassergefährdender stoffe (Löschwasser-Rückhalte-Richtlinie—LöRüRL) vom 31. März 1993. Niedersachsen, Nds.MBl. Nr. 16, S. 440, 1993Google Scholar
  18. Niedersachsen (2006) Bergverordnung für Tiefbohrungen, Untergrundspeicher und für die Gewinnung von Boden-schätzen durch Bohrungen im Land Niedersachsen (Tiefbohrverordnung—BVOT). Nds. MBl. S. 887, 20.9.2006Google Scholar
  19. Olsson O, Weichgrebe D, Rosenwinkel K-H (2013) Hydraulic fracturing wastewater in Germany: composition, treatment, concerns. Environ Earth Sci 70(8):3895–3906CrossRefGoogle Scholar
  20. Riedl J, Rotter S, Faetsch S, Schmitt-Jansen M, Altenburger R (2013) Proposal for applying a component-based mixture approach for ecotoxicological assessment of fracturing fluids. Environ Earth Sci 70(8):3907–3920CrossRefGoogle Scholar
  21. Schilling FP (2012) Gutachten Bohrung, Verrohrung und Zementierung, Anlage zu Uth H-J Gutachten Technische Sicherheit von Anlagen und Verfahren zur Erkundung und Förderung von Erdgas aus nichtkonventionellen Lagerstätten.
  22. SFK (1999) SFK-GS-26 Abschlussbericht Schadensbegrenzung bei Dennoch-Störfällen Empfehlungen für Kriterien zur Abgrenzung von Dennoch-Störfällen und für Vorkehrungen zur Begrenzung ihrer Auswirkungen. Störfallkommission.
  23. SFK(2004) SFK-GS-41 Bericht Risikomanagement im Rahmen der Störfall-Verordnung des Arbeitskreises Technische Systeme, Risiko und Verständigungsprozesse
  24. SFK (2005) SFK-GS-45 Schnittstelle Notfallplanung. Störfallkommission.
  25. TÜV Rheinland (2014) Programmsystem Notfallmanagementsystem DISMA, TÜV Rheinland, Köln/Berlin, 2014.
  26. Uth (1994) Uth, Hans-Joacchim (HG) Krisenmanagement bei Störfällen, Springer Berlin, Heidelberg, New York, ISBN 3-540-58023-9Google Scholar
  27. Uth H-J (2012) Technische Sicherheit von Anlagen und Verfahren zur Erkundung und Förderung von Erdgas aus nichtkonventionellen Lagerstätten.
  28. Uth H-J, Wiese N (2012) WEKA-Kommentar Anlagensicherheit und Störfallvorsorge, KissingenGoogle Scholar
  29. VDI (2000) Risikokommunikation für Unternehmen. Verband Deutscher Ingeneure, VDI-Verlag, ISBN 3-931 384-33-0, DüsseldorfGoogle Scholar
  30. WEG (2002) Empfehlung Bohrlochkontrolle, 2/2002. Wirtschaftsverband Erdöl und GasGoogle Scholar
  31. WEG (2006) Technische Regel Futterrohrberechnung, 6/2006. Wirtschaftsverband Erdöl and GasGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Expert on process safetyBerlinGermany

Personalised recommendations