Skip to main content

Advertisement

Log in

Natural hazards versus climate change and their potential impacts in the dry, northern Himalayas: focus on the upper Kali Gandaki (Mustang District, Nepal)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the Himalayas, the consequences of climate change are a fairly debated issue, mainly questioning the availability of water resources to the lowland population. North of the monsoon Himalayas, a semi-arid, continental climate prevails and settlements rely economically mostly on irrigated crops, high altitude rangelands, trade and tourism. The upper Kali Gandaki (Mustang) is situated in this area, with sharp contrasts between valley bottoms (<3,000 m) and high, glaciated peaks (up to >8,000 m). The impacts of climate change may appear in different ways. Gullying is common, and might increase with greater climate variability. Increased ground instabilities (earthflows and occasional debris flows) affecting extensive shale/marly substrates are also expected, linked to changes in snow cover and seasonality. Similarly, the combination of higher snowfall and rapid melting may favour the occurrence of flash floods. The possibility of glacial outburst floods is less probable because of the present limited glaciation. Eventually, permafrost melting may induce rock avalanches down the steepest cliffs and might impact the adjacent valley floors. Collectively, these hazards will affect irrigation canals and fields, new infrastructures and the associated growing settlements. Water availability in the near future is more difficult to predict; however, any change in the amount and nature of precipitation may affect groundwater reserves, hence spring discharge and runoff, with consequences for agricultural products. Eventually, the overall potential increase in natural hazards may jeopardize the development of small markets and the good connection of these upper valleys to the main urban centres of Nepal, a country with a very low economic and social capacity to adjust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baade J, Mäusbacher R (2000) Environmental change and settlement history, preliminary results from the Muktinath Valley, inner Himalayas, Nepal. Marburger Geogr Schriften 135:40–52

    Google Scholar 

  • Baade J, Mäusbacher R, Wagner GA, Heine E, Kostka R (1998) Landslides and deserted places in the semi-arid environment of the inner Himalaya. In: Kalvoda J, Rosenfeld CL (eds) Geomorphological hazards in high mountain areas. Kluwer Academic Publishers, Dordrecht, pp 49–61

    Chapter  Google Scholar 

  • Bahadur KCK (2012) Spatio-temporal patterns of agricultural expansion and its effect on watershed degradation: a case from the mountains of Nepal. Environ Earth Sci 65(7):2063–2077. doi:10.1007/s12665-011-1186-6

    Article  Google Scholar 

  • Bajracharya S, Mool P (2009) Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region, Nepal. Ann Glaciol 50–53:81–86

    Google Scholar 

  • Bernet D (2012a) Moving down or not? Report of the first field visit to Upper Mustang in early May 2012 (Part II: Samzung). Unpublished internal report. Kam for Sud, Tathali, p 112

    Google Scholar 

  • Bernet D (2012b) Moving down or not? Report of the first field visit to Upper Mustang in early May 2012 (Part III: Yara). Unpublished internal report. Kam for Sud, Tathali, p 77

    Google Scholar 

  • Bolch T, Buchroithner MF, Peters J, Baessler M, Bajracharya S (2008) Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat Hazards Earth Syst Sci 8:1329–1340

    Article  Google Scholar 

  • Bookhagen B (2012) Himalayan groundwater. Nat Geosci 5:97–98

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2010) Towards a complete Himalayan hydrological budget: the spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Research 115:FO3019. doi:10.1029/2009JF001426

    Article  Google Scholar 

  • Devkota D (2011) Sustainable cross-border ecotourism strategy in the Tibetan Plateau region. In: Kreutzmann H, Yong Y, Tichter J (eds) Pastoralism and rangeland management on the Tibetan Plateau in the context of climate and global change. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Germany, pp 123–141

    Google Scholar 

  • Dobremez JF (1976) Le Népal. Écologie et Biogéographie. CNRS, Paris, p 363

    Google Scholar 

  • Dobremez JF, Jest C (1971) Carte écologique du Népal I. Région Annapurna-Dhaulagiri. Doc Carte Végétation Alpes 9:147–190

    Google Scholar 

  • Dyurgerov M, Meier MF (2005) Glaciers and the changing earth system. A 2004 snapshot, Occasional Paper 58. Arctic and Alpine Research, University of Colorado, Boulder (Co), p 118

  • Fort M (1987) Geomorphic and Hazards mapping in the dry, continental Himalaya: 1:50,000 maps of Mustang District, Nepal. Mt Res Dev 7(3):222–238

    Article  Google Scholar 

  • Fort M (1996) Late Cenozoic environmental changes and uplift on the northern side of the Central Himalaya: a reappraisal from field data. Palaeoclimatol Palaeoecol Palaeogeogr 120:123–145

    Article  Google Scholar 

  • Fort M (1999) The role of large magnitude events in the distribution of natural hazards in the Nepalese Himalaya. In: Price M (ed) Global change in the mountains. Parthenon Publ, London, pp 169–171

    Google Scholar 

  • Fort M (2000a) Natural conditions and hazards for irrigation in the arid Himalaya of Upper Mustang District, Nepal. In: Kreutzmann H (ed) Sharing Water. Oxford University Press, 239–258

  • Fort M (2000b) Glaciers and mass wasting processes: their influence on the shaping of the Kali Gandaki valley (Higher Himalaya of Nepal). Quatern Int 65/66:101–119

    Article  Google Scholar 

  • Fort M (2011a) The Himalayas: from mountain building to landform evolution in a changing world. A tribute to Professor L. Starkel. Geographia Polonica 84(2):15–37

    Article  Google Scholar 

  • Fort M (2011b) Two large late Quaternary rock slope failures and their geomorphic significance, Annapurna Himalayas (Nepal). Geografia Fisica Dinamica Quaternaria 34(1):5–14

    Google Scholar 

  • Fort M, Freytet P, Colchen M (1982) Structural and sedimentological evolution of the Thakkhola-Mustang Graben (Nepal Himalaya). Zeit Geomorph N F 42:75–93

    Google Scholar 

  • Fujii Y, Higuchi K (1976) Ground temperature and its relation to permafrost occurrences in the Khumbu Region and Hidden Valley: glaciological expedition to Nepal, contribution no. 26. J Jpn Soc Snow Ice 38:125–128

    Article  Google Scholar 

  • Fujita K, Sakai A, Takenaka S, Nuimura T, Surazakov AB, Sawagaki T, Yamanokuchi T (2013) Potential flood volume of Himalayan glacial lakes. Nat Hazards Earth Syst Sci 13:1827–1839

    Article  Google Scholar 

  • Fukui K, Fujii Y, Ageta Y, Asahi K (2007) Changes in the lower limit of mountain permafrost between 1973 and 2004 in the Khumbu Himal, the Nepal Himalayas. Glob Planet Change 55:251–256

    Article  Google Scholar 

  • Gurung HB (1980) Vignettes of Nepal. Sahayogi Press, Kathmandu, p 435

    Google Scholar 

  • Haffner WU, Benachib H, Brock C, Gerique A, Merl K, Morkel S, Park M, Pohl, P, Titz AUK, Werding K (2001) Geographical field studies in Southern Mustang/Kali Gandaki Valley (Sept./Oct. 2000). In: Proceedings of the International Conference in Kathmandu: Sustainable Management of Natural and Human Resources in South Asia

  • Heimsath AM, McGlynn R (2008) Quantifying periglacial erosion in the Nepal high Himalaya. Geomorphology 97:5–23

    Article  Google Scholar 

  • Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the elevation effect, Karakoram Himalaya. Mt Res Dev 25:332–340

    Article  Google Scholar 

  • ICIMOD (2011) Glacial lakes and glacial lake outburst floods in Nepal. ICIMOD, Kathmandu, p 99

    Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian Water Towers. Science 328(5984):1382–1385

    Article  Google Scholar 

  • Immerzeel WW, Pellicciotti F, Bierkens MFP (2013) Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat GeoSci 6:742–745. doi:10.1038/NGEO1896

    Google Scholar 

  • IPCC (2007) Climate change 2007 synthesis report: summary for policymakers. Published online at www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf

  • Kappenberger G (2007) Climate changes and mountains. In: Baudo R, Tartarini G, Vuillermoz E (eds) Mountains witnesses of global changes. Elsevier, Amsterdam, pp 133–143

    Google Scholar 

  • Kattel DB, Yao T (2013) Recent temperature trends at mountain stations on the southern slope of the central Himalayas. J Earth Syst Sci 122(1):215–227

    Article  Google Scholar 

  • Knörtzer KH (2000) 3000 years of agriculture in a valley of the High Himalayas. Veg Hist Archaeobot 9:219–222

    Article  Google Scholar 

  • Kundzewicz ZW, Merz B, S. Vorogushyn S, Hartmann H, Duethmann D, Wortmann M, Huang S, Su B, Jiang T, Krysanova V (2014) Observed changes in climate and river discharge in the Aksu River Basin. Environ Earth Sci (this issue). doi:10.1007/s12665-014-3137-5

  • Lama N (2011) Rangeland management and eco-tourism. In: Kreutzmann H, Yong Y, Tichter J (eds) Pastoralism and rangeland management on the Tibetan Plateau in the context of climate and global change. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, Germany, pp 87–101

    Google Scholar 

  • Lioubimtseva E (2013) A multi-scale assessment of human vulnerability to climate change in the Aral Sea Basin. Environ Earth Sci. doi:10.1007/978-3-642-02356-9_17

  • Matsuoka N (1984) Frost shattering of bedrocks in the periglacial regions of the Nepal Himalaya. Seppyo 46:19–25

    Google Scholar 

  • McSweeney C, New M, Lizcano G (2010) UNDP climate change country profile: Nepal. http://www.climatenepal.org.np/main/?p=research&sp=onlinelibrary&opt=detail&id=372

  • Messerli B, Ives JD (eds) (1997) Mountains of the world: a global priority. Parthenon, London

    Google Scholar 

  • Miehe G (1984) Vegetationsgrenzen im extremen und multizonalen Hochgebirge (Zentraler Himalaya). Erdkunde 38:268–277

    Article  Google Scholar 

  • Miehe G, Miehe S, Schlütz F (2002) Vegetationskundliche und Palynologische Befunde aus dem Muktinath-Tal (Tibetischer Himalaya, Nepal). Ein Beitrag zur Landschaftsgeschichte altweltlicher Hochgebirgshalbwüsten. Erdkunde Band 56:268–285

    Article  Google Scholar 

  • Miehe G, Miehe S, Schlütz F (2009) Early human impact in the forest ecotone of southern High Asia (Hindu Kush, Himalaya). Quatern Res 71:255–265

    Article  Google Scholar 

  • Miller JD, Immerzeel WW, Rees G (2012) Climate change impacts on Glacier hydrology and river discharge in the Hindu Kush-Himalayas. Mt Res Dev 32(4):461–467. doi:10.1659/MRD-JOURNAL-D-12-00027.1

    Article  Google Scholar 

  • Mool PK, Bajracharya SR, Joshi SP (2001) Inventory of glaciers, glacial lakes and glacial lake outburst floods, Nepal. ICIMOD and UNEP/RRC-AP, Kathmandu, p 363

    Google Scholar 

  • New M, Lister D, Hulme M et al (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21(1):1–25

    Article  Google Scholar 

  • Paudel KP, Andersen P (2010) Assessing rangeland degradation using multi temporal satellite images and grazing pressure surface model in Upper Mustang, Trans Himalaya, Nepal. Remote Sens Environ 114:1845–1855

    Article  Google Scholar 

  • Pohle P (1993) Geographical research in the history of the cultural landscape of Southern Mustang. Ancient Nepal 134:58–88

    Google Scholar 

  • Regmi D (2009) Rock Glacier distribution and the lower limit of discontinuous mountain permafrost in the Nepal Himalaya. In: Proceedings of the Ninth International Conference on Permafrost (NICOP), June 29–July 3, 2008, Alaska Fairbanks, pp 1475–1480

  • Regmi D, Watanabe T (2009) Rockfall activities in the Kangchenjunga Area, Nepal Himalaya. Permafrost Periglac Process 20:390–398

    Article  Google Scholar 

  • Schuh D (1992–93) Introduction. Ancient Nepal 130–133

  • Shiraiwa T (1992) Freeze thaw activities and rock breakdown in the Langtang valley, Nepal Himalaya. Environ Sci 15:1–12

    Google Scholar 

  • Shrestha AB (2009) Climate change in the Hindu Kush-Himalayas and its impacts on water and hazards. APMN (Asia Pacific Mountain Network) Bulletin 9:1–5

    Google Scholar 

  • Shrestha A, Aryal R (2011) Climate change in Nepal and its impact on Himalayan glaciers. Reg Environ Change 11(Suppl 1):65–77

    Article  Google Scholar 

  • Simons A, Schön W (1998) Cave systems and terrace settlements in Mustang, Nepal. Settlement periods from prehistoric times to the present day. Beiträge zur allgemeinen und vergleichenden Archäologie 18:27–47

    Google Scholar 

  • Simons A, Schön W, Dämmer HW (1997) Mit dem Seil in die Vergangenheit. Archäologie im Hohen Himalaja. Forschung Mittelungen DFG 2-3(97):30–34

    Google Scholar 

  • Singh SP, Bassignana-Khadka I, Karky BS, Sharma E (2011) Climate change in the Hindu Kush-Himalayas: The state of current knowledge. ICIMOD, Kathmandu

    Google Scholar 

  • Su Y, Lu J, Manandhar S, Ahmad A, Xu J (2013) Policy and institutions in adaptation to climate change. Case study on tree crop diversity in China, Nepal, and Pakistan. ICIMOD Working Paper 2013/3, Kathmandu: ICIMOD, p 60

  • Thayyen RJ, Gergan JT (2010) Role of glaciers in watershed hydrology: a preliminary study of a “Himalayan catchment”. Cryosphere 4:115–128

    Article  Google Scholar 

  • von Fürer-Haimendorf C (1975) Himalayan traders. J. Murray, London, p 315

    Google Scholar 

  • Wu Q, Zhang T, Liu Y (2011) Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010. Cryosphere 6:607–612. doi:10.5194/tc-6-607-2012

    Article  Google Scholar 

  • Xie C, Zhao L, Wu T, Dong X (2012) Changes in the thermal and hydraulic regime within the active layer in the Qinghai-Tibet Plateau. J Mt Sci 9:483–491

    Article  Google Scholar 

Download references

Acknowledgments

Fieldwork was supported by various Paris-Diderot University and CNRS (RCP Nepal, GRECO Himalaya, UMR 8586 PRODIG) research grants during the last 38 years. My warmest thanks go to my porters, and to the many friends and colleagues of Kathmandu Institutions (Department of Mines and Geology, Tri-Chandra Campus Tribhuvan University, Kirtipur University, ICIMOD) for stimulating discussions and support. My appreciation goes to Carol Robins who helped improve the English, and to M. Pateau and V. Viel (Univ. Paris-Diderot) who helped for the figures. I also thank anonymous reviewers for their constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Fort.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fort, M. Natural hazards versus climate change and their potential impacts in the dry, northern Himalayas: focus on the upper Kali Gandaki (Mustang District, Nepal). Environ Earth Sci 73, 801–814 (2015). https://doi.org/10.1007/s12665-014-3087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3087-y

Keywords

Navigation