Skip to main content
Log in

Evaluation and analysis of surface deformation in west Chapala basin, central Mexico

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Vertical deformation was measured at 14 benchmarks within the urban area of Jocotepec Mexico using first-order leveling methods and then spatially analyzed in relation to land subsidence and soil discontinuity patterns. The study area is located within the western portion of the Chapala basin, middle-west Mexico. Observations of vertical surficial deformation were made at each benchmark (September and November 2012) relative to a fixed station and compared to an initial survey of each benchmark (April 2012). Results indicate that a maximum subsidence of 7.16 cm over the 8-month measurement interval occurs near downtown coincident with the largest levels of drawdown and translates to a maximum subsidence rate of 0.89 cm/month for the sampling period. Two benchmarks located northwest and southeast of the urban area exhibited uplift of 2.8 and 0.76 cm, respectively, suggesting a complex mechanical response between the sedimentary soil units and the factors causing deformation. A potential spatial relationship exists between subsidence patterns and soil discontinuities. Four separate cones of groundwater depression were observed with two being coincident with subsidence bowls downtown and south of the urban area; however, there is no clear relationship between drawdown and subsidence in the remaining areas. Hydrogeologic reconstructions reveal alternating sequences of alluvial aquifers and highly deformable lacustrine aquitards. An analysis of the soil discontinuities reveals that they are directly aligned with the patterns of vertical deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aranda-Gomez J (1989) Geologia prelimiar del graben de Aguascalientes (Preliminar geology of the graben of Aguascalientes). Revista del Instituto de Geología, UNAM 18(1):22–32

    Google Scholar 

  • Bell JW, Amelung F, Ramellt AR, Blewitt G (2002) Land subsidence in Las Vegas, Nevada, 1935–2000: new geodetic data show evolution, revised spatial patterns, and reduced rates. Environ Eng Geosci 7(3):155–174

    Article  Google Scholar 

  • Bell JW, Amelung A, Ferreti A, Bianchi M, Novali F (2008) Permanent scatterer InSAR reveals seasonal and long-term aquifer-system response to groundwater pumping and artificial recharge. Water Resour Res 44:W02407. doi:10.1029/2007WR006152

    Google Scholar 

  • Burbey TJ (2002) The influence of faults in basin-fill deposits on land subsidence, Las Vegas Valley, Nevada, USA. Hydrogeol J 10(5):525–538

    Article  Google Scholar 

  • Carreón-Freyre DC, Cerca M, Luna-Gonzalez L, Gamez-Gonzalez FJ (2005) Influencia de la estratigrafia y estructura geologica en el flujo de agua subterranea del Valle de Queretaro (Influence of the stratigraphy and geologic structure on the groundwater flow of the Queretaro Valley). Rev Mex Cienc Geol 22(1):1–18

    Google Scholar 

  • Castillo-Aja MR, Valdivia-Ornelas L (2007) Amenazas por agrietamiento en el Valle de Tesistán (Risks due to cracking in the valley of Tesistan). Universidad de Guadalajara

  • Conagua (2009) Determinación de la Disponibilidad de Agua en el Acuífero Chapala (Determination of water disponibility from the Chapala Aquifer). Government public document, Jalisco

    Google Scholar 

  • Fernex F, Zarate-del-Valle P, Ramirez-Sanchez H, Michaud F, Parron C, Dalmasso J, Barci-Funel G, Guzman-Arroyo M (2001) Sedimentation rates in Lake Chapala (western Mexico): possible active tectonic control. Chem Geol 177(3–4):213–228

    Article  Google Scholar 

  • Gambolati G, Freeze AR (1973) Mathematical simulation of the subsidence of Venice 1. Theor Water Resour Res 9(3):721–733

    Article  Google Scholar 

  • Hantush MS (1960) Modification of the theory of leaky aquifers. J Geophys Res 65(11):3713–3725

    Article  Google Scholar 

  • Hernandez-Marin M (2003) Estudio del comportamiento hidromecánico de sedimentos vulcanolacustres durante el proceso de consolidación (Study of the hydromechanic behavior of the vulcano-lacustrine sediments during the process of consolidation). Master Dissertation, National Autonomous University of Mexico, Mexico, p 139

  • Hernandez-Marin M, Burbey TJ (2009) The role of faulting on surface deformation patterns from pumping-induced groundwater flow (Las Vegas Valley, USA). Hydrogeol J 17(8):1859–1875. doi:10.1007/s10040-009-0501-8

    Article  Google Scholar 

  • Holzer TL (1984) Ground failure induced by groundwater withdrawal from unconsolidated sediments. In: Holzer LT (eds) Reviews in Enginering Geology. Geological Society of America, pp 67–105

  • Holzer LT, Pampeyan EH (1981) Earth fissures and localized differential subsidence. Water Resour Res 17:223–227

    Article  Google Scholar 

  • INEGI (2010) Censo de población y vivienda (Census of population and housing). Mexico

  • Li Y, Yang J, Hu X (2000) Origin of ground fissures in the Shanxi Graben System, Northern China. Eng Geol 55:267–275

    Article  Google Scholar 

  • Lixin Y, Fang Z, He X, Shijie C, Wei W, Qiang Y (2011) Land subsidence in Tianjin, China. Environ Earth Sci 62(6):1151–1161. doi:10.1007/s12665-010-0604-5

    Article  Google Scholar 

  • Luhr JF, Nelson SA, Allan JF, Carmichael ISE (1985) Active rifting in southwestern Mexico: manifestations of an incipient eastward spreading-ridge jump. Geology 13:54–57

    Article  Google Scholar 

  • Nichols G (2009) Sedimentology and stratigraphy, 3rd edn. Wiley-Blackwell, UK, p 432

    Google Scholar 

  • Ortega-Guerrero A, Cherry JA, Rudolph DL (1993) Large-scale aquitard consolidation near Mexico City. Ground Water 31(5):708–718

    Article  Google Scholar 

  • Ortega-Guerrero A, Rudolph DL, Cherry JA (1999) Analysis of long-term land subsidence near Mexico City: field investigations and predictive modeling. Water Resour Res 35(11):3327–3341

    Article  Google Scholar 

  • Osmanoğlu B, Dixon TH, Wdowinski S, Cabral-Cano E, Jiang Y (2011) Mexico City subsidence observed with persistent scatterer InSAR. Int J Appl Earth Obs Geoinf 13(1):1–12

    Article  Google Scholar 

  • Pacheco JF, Montera-Gutierrez CA, Delgado H, Singh SK, Valenzuela W, Shapiro NM, Santoyo MA, Hurtado A, Barron R, Gutierrez-Moguel E (1999) Tectonic significance of an earthquake in the Zacoalco half-graben, Jalisco, Mexico. J S Am Earth Sci 12(6):557–565

    Article  Google Scholar 

  • Pacheco-Martinez J, Arzate J, Rojas E, Arroyo M, Yutsis V, Ochoa GH (2006) Delimitation of ground failure zones due to land subsidence using gravity data finite element modeling in the Querétaro valley, México. Eng Geol 84(3–4):143–160

    Article  Google Scholar 

  • Rojas E, Arzate J, Arroyo M (2002) A method to predict the group fissuring and faulting caused by regional groundwater decline. Eng Geol 65:245–260

    Article  Google Scholar 

  • Rosas-Elguera JG, Urrutia-Fucugauchi J (1998) Tectonic control of the volcano-sedimentary sequence of the Chapala graben, western Mexico. Int Geol Rev 40(4):350–362

    Article  Google Scholar 

  • Rosas-Elguera JG, Nieto-Obregón J, Urrutia-Fucugauchi J (1993) Ambiente estructural en la frontera Norte del bloque Jalisco: Contribuciones a la Tectónica del Occidente de México (Structural environment in the northern frontier of the Jalisco block: Contributions to the tectonics of western Mexico). Unión Geofísica Mexicana, Pto. Vallarta, pp 175–192

  • Rudolph DL, Frind EO (1991) Hydraulic response of highly compressible aquitards during consolidation. Water Resour Res 27(1):17–30

    Article  Google Scholar 

  • SGM (2005) Estudio de riesgos por hundimiento en la zona urbana y conurbada de la ciudad de Ameca, Jalisco (Study of risk by subsidence in the urban zone and suburbs of the city of Ameca, Jalisco), p 98

  • Suárez G, García-Acosta V, Gaulon R (1994) Active crustal formation in the Jalisco Block, Mexico: evidence for a great historical earthquake in the 16th century. Tectonophysics 234:117–127

    Article  Google Scholar 

  • Suárez-Plascencia C, Escalona-Alcázar JF, Díaz-Torres JJ (2005) Desarrollo de grietas en el fraccionamiento Prados de Nextipac, Municipio de Zapopan, Jalisco (Development of cracks in the “Prados de Nextipac” community, Municipality of Zapopan, Jalisco). GEOS 25(2):1–11

    Google Scholar 

  • Teatini P, Ferronato M, Gambolati G (2006) Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: modeling the past occurrence and the future trend. Water Resour Res 42:1–19

    Google Scholar 

  • Zarate-del-Valle P, Simoneit B (2005) La generación de petróleo hidrotermal en sedimentos del Lago Chapala y su relación con la actividad geotérmica del rift Citala en el estado de Jalisco, México (Generation of hidrotermal oil into the Chapala Lake sediments and its relationship with the geotermal activity of the Citala rift in the state of Jalisco, Mexico). Rev Mex Cienc Geol 22(3):358–370

    Google Scholar 

  • Zermeño-de-León ME, Mendoza-Otero E, Calvillo-Silva G (2004) Medición del hundimiento y modelo para estudiar el agrietamiento de la ciudad de Aguascalientes (Measurement of sinking and model for studying cracking in the city of Aguascalientes). Invest Cienc 12(31):35–40

    Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by the Autonomous University of Aguascalientes through internal project PIIC 12-2. Technical support by Alfredo Solis-Pinto during the leveling and elevation data processing portion of this investigation is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hernandez-Marin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hernandez-Marin, M., Pacheco-Martinez, J., Ramirez-Cortes, A. et al. Evaluation and analysis of surface deformation in west Chapala basin, central Mexico. Environ Earth Sci 72, 1491–1501 (2014). https://doi.org/10.1007/s12665-014-3054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3054-7

Keywords

Navigation