Skip to main content
Log in

Asbestos and other fibrous minerals contained in the serpentinites of the Gimigliano-Mount Reventino Unit (Calabria, S-Italy)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Serpentinites are metamorphic rocks with good technological properties and valuable ornamental characteristics, which have been exploited since ancient times. Actually, their use is limited and monitored in several countries worldwide because they can contain fibrous asbestos minerals that may be carcinogenic. Furthermore, certain types of fibrous minerals can be confused with asbestos, and must therefore be carefully investigated. We have investigated the possible presence of the asbestos and non-asbestos fibrous phases contained in serpentinitic rocks in a meta-ophiolitic sequence from the Gimigliano-Mount Reventino Unit (Southern Italy), which had not been previously assessed. The detection and quantification of asbestos and the correct distinction of the fibrous non-asbestos minerals are very important not only from a scientific point of view, but also from a legislative one. This is especially the case for the administrative agencies that have to take decisions with regards to the implementation of public and occupational health protection measures (e.g., in road yards and quarry excavations). As a consequence of this, serpentinitic rock samples have been characterized in detail through X-ray powder diffraction, scanning and transmission electron microscopy combined with energy-dispersive spectrometry, analytical electron microscopy (SEM–EDS and TEM–AEM), differential scanning calorimetry, thermogravimetry and micro-Raman spectroscopy. Two kinds of asbestos and four kinds of non-asbestos fibrous silicates have been detected in the examined samples. In order of decreasing abundance these are polygonal serpentine, chrysotile, fibrous antigorite, tremolite, gedrite and magnesiohornblende. The size, morphology, crystallinity and chemical composition of the fibres were also discussed, in the light of the possible role these properties could play in the carcinogenic effect on human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez W (2005) Structure of the Monte Reventino greenschist folds: a contribution to untangling the tectonic-transport history of Calabria, a key element in Italian tectonics. J Struct Geol 27:1355–1378

    Article  Google Scholar 

  • Apollaro C, Accornero M, Bloise A, Biddau R, De Rosa R, Marini L, Muto F, Polemio M (2009) Hydrogeochemical characteristics of a stratified aquifer and groundwater quality degradation, Sila Massif, Italy. IAHS Red Book 329:247–253

    Google Scholar 

  • Apollaro C, Marini L, Critelli T, Barca D, Bloise A, De Rosa R, Liberi F, Miriello D (2011) Investigation of rock-to-water release and fate of major, minor, and trace elements in the metabasalt-serpentinite shallow aquifer of Mt. Reventino (CZ, Italy) by reaction path modelling. Appl Geochem 26:1722–1740

    Article  Google Scholar 

  • Belluso E, Compagnoni R, Ferraris G (1995) Occurrence of asbestiform minerals in the serpentinites of the Piemonte Zone, Western Alps. Giornata di Studio in ricordo del Prof. Stefano Zucchetti. Politecnico di Torino, Torino, pp 57–64

    Google Scholar 

  • Bergamini C, Fato R, Biagini G, Pugnaloni A, Giantomassi F, Foresti E, Lesci I, Roveri N, Lenaz G (2007) Mitochondrial changes induced by natural and synthetic asbestos fibers: studies on isolated mitochondria. Cell Mol Biol 52:905–913

    Google Scholar 

  • Berman DW, Crump KS, Chatfield EJ, Davis JMG, Jones AD (1995) The sizes, shapes, and mineralogy of asbestos structures that induce lung tumors or mesothelioma in AF/HAN rats following inhalation. Risk Anal 15(2):181–195

    Article  Google Scholar 

  • Bernstein D, Castranova V, Donaldson K, Fubini B, Hadley J, Hesterberg T, Kane A, Lai D, McConnell EE, Muhle H, Oberdorster G, Olin S, Warheit DB (2005) Testing of fibrous particles: short-term assays and strategies. Inhal Toxicol 17:497–537

    Article  Google Scholar 

  • Bloise A, Fornero E, Belluso E, Barrese E, Rinaudo C (2008) Synthesis and characterization of tremolite asbestos fibres. Eur J Miner 20:1027–1033

    Article  Google Scholar 

  • Bloise A, Barrese E, Apollaro C (2009a) Hydrothermal alteration of Ti- doped forsterite to chrysotile and characterization of the resulting chrysotile fibres. N Jb Miner Mh 185(3):297–304

    Article  Google Scholar 

  • Bloise A, Belluso E, Barrese E, Miriello D, Apollaro C (2009b) Synthesis of Fe-doped chrysotile and characterization of the resulting chrysotile fibres. Cryst Res Technol 44(6):590–596

    Article  Google Scholar 

  • Bloise A, Belluso E, Fornero E, Rinaudo C, Barrese E, Capella S (2010) Influence of synthesis condition on growth of Ni-doped chrysotile. Microporous Mesoporous Mater 132:239–245

    Article  Google Scholar 

  • Bloise A, Belluso E, Critelli T, Catalano M, Apollaro C, Miriello D, Barrese E (2012) Amphibole asbestos and other fibrous minerals in the meta-basalt of the Gimigliano-Mount Reventino Unit (Calabria, south-Italy). Rend Online Soc Geol It 21(2):847–848

    Google Scholar 

  • Buccianti A, Apollaro C, Bloise A, De Rosa R, Falcone G, Scarciglia F, Tallarico A, Vecchio G (2009) Natural radioactivity levels (K, Th, U and Rn) in the Cecita Lake area (Sila massif, Calabria, Southern Italy): an attempt to discover correlations with soil features on a statistical base. Geoderma 152(1–2):145–156

    Article  Google Scholar 

  • Burragato F, Crispino M, Monti A, Monti F, Montagano G, Papacchini L, Rossigni F, Schettino, B, Sperduto B (2006) Environmental pollution from airborne asbestiform fibres: development of fibre propagation maps. In: Abstract of the European conference on asbestos risk and management, Rome, Italy, pp 85–90

  • Campopiano A, Olori A, Zakrzewska AM, Capone PP, Iannò A (2009) Chemical-mineralogical characterisation of greenstone from San Mango d’Aquino. Prev Today 5(3/4):25–38

    Google Scholar 

  • Cardile V, Lombardo L, Belluso E, Panico A, Capella S, Balazy M (2007) Toxicity and carcinogenicity mechanisms of fibrous antigorite. Int J Environ Res Public Health 4(1):1–9

    Article  Google Scholar 

  • Davis JM, Bolton RE, Douglas AN, Jones AD, Smith T (1988) Effects of electrostatic charge on the pathogenicity of chrysotile asbestos. Br J Ind Med 45(5):292–299

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (2009) Rock forming minerals, layered silicates excluding micas and clay minerals. In: 3B, Geological society edn, London, p 314

  • Dodson RF, Atkinson MA, Levin JL (2003) Asbestos fiber length as related to potential pathogenicity: a critical review. Am J Ind Med 44:291–297

    Article  Google Scholar 

  • Falini G, Foresti E, Lesci G, Roveri N (2002) Structural and morphological characterization of synthetic chrysotile single crystals. Chem Commun 14:1512–1513

    Article  Google Scholar 

  • Fitz Gerald JD, Eggleton RA, Keeling JL (2010) Antigorite from Rowland Flat, South Australia: asbestiform character. Eur J Miner 22:525–533

    Article  Google Scholar 

  • Foresti E, Hochella MF, Lesci IG, Madden AS, Roveri N, Xu H (2005) Morphological and chemical/physical characterization of Fe-doped synthetic chrysotile nanotubes. Adv Funct Mater 15:1009–1016

    Article  Google Scholar 

  • Fornero E, Allegrina M, Rinaudo C, Mazziotti-Tagliani S, Gianfagna A (2008) Micro-Raman spectroscopy applied on oriented crystals of fluoro-edenite amphibole. Per Miner 77(2):3–12

    Google Scholar 

  • Fubini B, Otero AC (1999) Chemical aspects of the toxicity of inhaled mineral dusts. Chem Soc Rev 28:373–383

    Article  Google Scholar 

  • Gazzano E, Foresti E, Lesci IG, Tomatis M, Riganti C, Fubini B, Roveri N, Ghigo D (2005) Different cellular responses evoked by natural and stoichiometric synthetic chrysotile asbestos. Toxicol Appl Pharmacol 206(3):356–364

    Article  Google Scholar 

  • Gazzano E, Turci F, Foresti E, Putzu MG, Aldieri E, Silvagno F, Lesci IG, Tomatis M, Riganti C, Romano C, Fubini B, Roveri N, Ghigo D (2007) Iron-loaded synthetic chrysotile: a new model solid for studying the role of iron in asbestos toxicity. Chem Res Toxicol 20(3):380–387

    Article  Google Scholar 

  • Groppo C, Rinaudo C, Cairo S, Gastaldi D, Compagnoni R (2006) Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. Eur J Mineral 18:319–329

    Article  Google Scholar 

  • Gunter ME, Belluso E, Mottana A (2007) Amphiboles: environmental and health concerns. In: Rosso JJ (ed) Reviews in mineralogy and geochemistry, Mineralogical society of America geochemical society, Chantilly, vol 67. VA, pp 453–516

  • Guthrie GD, Mossman BT (1993) Merging the geological and biological science an integrated approach to mineral induced pulmonary disease, in health effects of mineral dusts. In: Reviews in mineralogy and geochemistry, Mineralogical society of America, vol 28. Chelsea, MI, pp 1–5

  • Hawthorne FC, Oberti R (2007) Classification of the Amphiboles. In: Rosso JJ (ed) Reviews in mineralogy and geochemistry, Mineralogical society of America geochemical society, vol 67. Chantilly, VA, pp 55–88

  • Iannace A, Vitale S, D’Errico M, Mazzoli S, Di Staso A, Macaione E, Messina A, Reddy SM, Somma R, Zamparelli V, Zattin M, Bonardi G (2007) The carbonate tectonic units of northern Calabria (Italy): a record of Apulian palaeomargin evolution and Miocene convergence, continental crust subduction, and exhumation of HP–LT rocks. J Geol Soc Lond 164:1165–1186

    Article  Google Scholar 

  • Ietto A, Barillaro AM (1993) L’unità di San Donato quale margine deformato cretacico-paleogenico del bacino di Lagonegro (Appennino meridionale-Arco-Calabro). Boll Soc Geol Italy 111:193–215

    Google Scholar 

  • Kane AB (1996) Mechanisms of mineral fibre carcinogenesis. IARC Sci Publ 140:11–34

    Google Scholar 

  • Korytkova EN, Maslov AV, Pivovarova LN, Polegotchenkova YV, Povinich VF, Gusarov VV (2005) Synthesis of nanotubular Mg3Si2O5(OH)4–Ni3Si2O5(OH)4 silicates at elevated temperatures and pressures. Inorg Mater 41(7):743–749

    Article  Google Scholar 

  • Labagnara D, Patrucco M, Rossetti P, Pellegrino V (2013) Predictive assessment of the asbestos content in the Western Italian Alps: an essential tool for an effective approach to risk analysis and management in tunneling operations and muck reuse. Environ Earth Sci 70:857–868

    Google Scholar 

  • Liberi F, Piluso E (2009) Tectonometamorphic evolution of the ophiolite sequences from Northern Calabrian Arc. Ital J Geosci (Boll Soc Geol Ital) 128:483–493

    Google Scholar 

  • Liberi F, Morten L, Piluso E (2006) Geodynamic significance of ophiolite within the Calabrian Arc. Isl Arc 15:26–43

    Article  Google Scholar 

  • Loomis D, Dement J, Richardson D, Wolf S (2010) Asbestos fibre dimensions and lung cancer mortality among workers exposed to chrysotile. Occup Environ Med 67(9):580–584

    Article  Google Scholar 

  • Loreto C, Carnazza ML, Cardile V, Libra M, Lombardo L, Malaponte G, Martinez G, Musumeci G, Papa V, Cocco L (2009) Mineral fiber-mediated activation of phosphoinositide-specific phospholipase c in human bronchoalveolar carcinoma-derived alveolar epithelial A549 cells. Int J Oncol 34:371–376

    Google Scholar 

  • Maroto-Valer MM, Fauth DJ, Kuchta ME, Zhang Y, Andresen JM (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process Technol 86:1627–1645

    Article  Google Scholar 

  • Mossman BT, Lippmann M, Hesterberg TW, Kelsey KT, Barchowsky A, Bonner JC (2011) Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J Toxicol Environ Health B 14(1–4):76–121

    Article  Google Scholar 

  • Niklinski J, Niklinskab W, Chyczewskac E, Laudanskia J, Naumnikc W, Chyczewskid L, Pluygerse E (2004) The epidemiology of asbestos-related diseases. Lung Cancer 45S:S7–S15

    Article  Google Scholar 

  • NIOSH: National Institute for Occupational Safety and Health (2011) Asbestos fibers and other elongate mineral particles: state of the science and roadmap for research. In: National Institute for occupational safety and health edn, Cincinnati, p 337

  • O’Hanley DS, Dyar MD (1993) The composition of lizardite 1T and the formation of magnetite in serpentinites. Am Miner 78:391–404

    Google Scholar 

  • Piluso E, Morten L (2004) Hercynian high temperature granulites and migmatites from the Catena Costiera, northern Calabria, southern Italy. Per Miner LXXIII 2:159–172

    Google Scholar 

  • Pugnaloni A, Giantomassi F, Lucarini G, Capella S, Mattioli-Belmonte M, Orciani M, Belluso E (2010) Effects of asbestiform antigorite on human alveolar epithelial A549 cells: a morphological and immunohistochemical study. Acta Histochem 112:133–146

    Article  Google Scholar 

  • Pugnaloni A, Giantomassi F, Lucarini G, Capella S, Bloise A, Di Primio R, Belluso E (2013) Cytotoxicity induced by exposure to natural and synthetic tremolite asbestos: an in vitro pilot study. Acta Histochem 115(2):100–112

    Article  Google Scholar 

  • Punturo R, Fiannacca P, Lo Giudice A, Pezzino A, Cirrincione R, Liberi F, Piluso E (2004) Le cave storiche della “Pietra Verde” di Gimigliano e Monte Reventino (Calabria): studio petrografico e geochimico. Boll Acc Gioenia Sci Nat 37(364):35–57

    Google Scholar 

  • Rinaudo C, Gastaldi D, Belluso E (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can Miner 41:883–890

    Article  Google Scholar 

  • Rinaudo C, Belluso E, Gastaldi D (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Miner Mag 68:455–465

    Article  Google Scholar 

  • Santantonio M, Teale CT (1987) An example of the use of detrital episodes in elucidating complex basin histories: the Caloveto and Longobucco groups of N.E. Calabria, S. Italy. In: Leggett JK, Zuffa GG (eds) Marine clastic sedimentology, Netherlands, pp 62–74

  • Silvestri S, Veraldi A, Falcone M, Capone PP, Amato G, Campopiano A, Spagnoli G (2005) Serpentine and amphiboles in Calabria: preliminary results of a monitoring programme in the general environment and in the workplace. Epidemiol Prev 29(5–6):63–64

    Google Scholar 

  • Srivastava RK, Lohani M, Pant AB, Rahman Q (2010) Cytogenotoxicity of amphibole asbestos fibres in cultured human lung epithelial cell line: role of surface iron. Toxicol Ind Health 26:575–582

    Article  Google Scholar 

  • Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, Smith A (1981) Relation of particle dimension to carcinogenicity in amphibole asbestoses and other fibrous mineral. J Natl Cancer Inst 67:965–975

    Google Scholar 

  • Suzuki Y, Yuen SR, Ashley R (2005) Short, thin asbestos fibres contribute to the development of human malignant mesothelioma: pathological evidence. Int J Hyg Environ Health 208:201–210

    Article  Google Scholar 

  • Van Oss CJ, Naim JO, Costanzo PM, Giese RF Jr, Wu W, Sorling AF (1999) Impact of different asbestos species and other mineral particles on pulmonary pathogenesis. Clays Clay Miner 47:697–707

    Article  Google Scholar 

  • Viti C (2010) Serpentine minerals discrimination by thermal analysis. Am Miner 95:631–638

    Article  Google Scholar 

  • Viti C, Giacobbe C, Gualtieri AF (2011) Quantitative determination of chrysotile in massive serpentinites using DTA: implications for asbestos determinations. Am Miner 96:1003–1011

    Article  Google Scholar 

  • Zakrzewska AM, Capone PP, Iannò A, Tarzia V, Campopiano A, Villella E, Giardino R (2008) Calabrian ophiolites: dispersion of airborne asbestos fibres during mining and milling operations. Period Miner 77:27–34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bloise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloise, A., Critelli, T., Catalano, M. et al. Asbestos and other fibrous minerals contained in the serpentinites of the Gimigliano-Mount Reventino Unit (Calabria, S-Italy). Environ Earth Sci 71, 3773–3786 (2014). https://doi.org/10.1007/s12665-013-3035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-3035-2

Keywords

Navigation