Skip to main content
Log in

Geochemical, mineralogical and magnetic characteristics of vertical dust deposition in urban environment

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Studies on composition and distribution of dust deposition are necessary for the risk assessment of dust to atmospheric quality. We studied the vertical distribution pattern of dust and metal (Cu, Fe, Pb, Zn) deposition up to 33 m height in urban environment. Integrated geochemical, mineralogical and magnetic study of the seasonally sampled dust helped to specify our knowledge on the use of magnetic susceptibility for tracking its deposition. Harmful dust and metal deposition may occur even at great heights and at the low-traffic side of buildings. Re-suspension of local surface materials dominates the dust deposition primarily in summer and spring due to weather conditions, and it may overwrite the influence of recent anthropogenic activities on dust composition. The accepted air-flow models should be modified by taking the local conditions (weather, morphology, etc.) into account. All studied metals showed strong enrichment in the dust and could be characterized by similar vertical deposition pattern to dust. The total susceptibility was found to be much more useful proxy for tracking dust and metal deposition than mass-specific susceptibility. Using the former, potential errors arising from sampling practice of settled dust could be eliminated. The most important heavy-metal-bearing phases were iron oxides and clay minerals. Their different behavior during the dust deposition is reflected by the vertical metal distribution patterns. Clay minerals originate primarily from re-suspension and may be one of the most important sources of potentially mobile heavy metals in such materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banerjee ADK (2003) Heavy metal levels and solid phase speciation in street dusts of Delhi, India. Environ Pollut 123:95–105. doi:10.1016/S0269-7491(02)00337-8

    Article  Google Scholar 

  • Barrett JS, Taylor KG, Hudson-Edwards K, Charnock JM (2010) Solid-phase speciation of Pb in urban road dust sediment: a XANES and EXAFS study. Environ Sci Technol 44:2940–2946. doi:10.1021/es903737k

    Article  Google Scholar 

  • Bartófi I (2000) Environmental technology (in Hungarian). Mezőgazda Kiadó, Budapest

    Google Scholar 

  • Booth CA, Shilton V, Fullen MA, Walden J, Worsley AT, Power AL (2006) Environmental magnetism: measuring, monitoring and modeling urban street dust pollution. In: Longhurst JWS and Brebbia CA (eds.) WIT transactions on ecology and the environment, vol 86, Air Pollution XIV. WIT Press, pp 333–342

  • Duong TTT, Lee BK (2009) Partitioning and mobility behavior of metals in road dusts from national-scale industrial areas in Korea. Atmos Environ 43:3502–3509. doi:10.1016/j.atmosenv.2009.04.036

    Article  Google Scholar 

  • Elzinga EJ, Gao Y, Fitts JP, Tappero R (2011) Iron speciation in urban dust. Atmos Environ 45:4528–4532

    Article  Google Scholar 

  • Farkas I, Weiszburg T (2006) Mineralogical investigation of settled and airborne dust collected from Cluj County, Romania. Földtani Közlöny 136:547–572

    Google Scholar 

  • Filipelli GM, Laidlaw MAS, Latimer JC, Raftis R (2005) Urban lead poisoning and medical geology: an unfinished story. GSA Today 15:4–11

    Article  Google Scholar 

  • Gautam P, Blaha U, Appel E (2005) Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmos Environ 39:2201–2211. doi:10.1016/j.atmosenv.2005.01.006

    Article  Google Scholar 

  • Hunt A, Jones J, Oldfield F (1984) Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Sci Total Environ 33:129–139. doi:10.1016/0048-9697(84)90387-5

    Article  Google Scholar 

  • Hunt A, Johnson DL, Thornton I (1993) Apportioning the sources of lead in house dusts in the London borough of Richmond, England. Sci Total Environ 138:183–206. doi:10.1016/0048-9697(93)90414-2

    Article  Google Scholar 

  • Inomata Y, Igarashi Y, Chiba M, Shinoda Y, Takahashi H (2009) Dry and wet deposition of water-insoluble dust and water-soluble chemical species during spring 2007 in Tsukuba, Japan. Atmos Environ 43:4503–4512. doi:10.1016/j.atmosenv.2009.06.048

    Article  Google Scholar 

  • Ji Y, Feng Y, Wu J, Zhu T, Bai Z, Duan C (2008) Using geoaccumulation index to study source profiles of soil dust in China. J Environ Sci 20:571–578. doi:10.1016/S1001-0742(08)62096-3

    Article  Google Scholar 

  • Krolak E (2000) Heavy metals in falling dust in Eastern Mazowieckie province. Pol J Environ Stud 9:517–522

    Google Scholar 

  • Kvietkus K, Sakalys J, Valiulis D (2011) Trends of atmospheric heavy metal deposition in Lithuania. Lith J Phys 51:359–369. doi:10.3952/physics.v51i4.2258

    Article  Google Scholar 

  • Laidlaw MAS, Filippelli GM (2008) Resuspension of urban soils as a persistent source of lead poisoning in children: a review and new directions. Appl Geochem 23:2021–2039. doi:10.1016/j.appgeochem.2008.05.009

    Article  Google Scholar 

  • Lu SG, Zheng YW, Bai SQ (2008) A HRTEM/EDX approach to identification of the source of dust particles on urban tree leaves. Atmos Environ 42:6431–6441. doi:10.1016/j.atmosenv.2008.04.039

    Article  Google Scholar 

  • Maher BA (2009) Rain and dust: magnetic record of climate and pollution. Elements 5:229–234. doi:10.2113/gselements.5.4.229

    Article  Google Scholar 

  • Manasreh WA (2010) Assessment of trace metals in street dusts of Mutah city, Karak, Jordan. Carpath J Earth Environ 5(1):5–12

    Google Scholar 

  • Márton E, Sipos P, Németh T, May Z (2011) Transport of pollutants around a high building: integrated magnetic, mineralogical and geochemical study. In: Conference Proceedings and Exhibitor’s Catalogue, 6th Congress of the Balkan Geophysical Society (3–6 Oct 2011, Budapest, Hungary), European Association of Geoscientists and Engineers, B9 1–6

  • Micallef A, Deuchar CN, Colls JJ (1998) Indoor and outdoor measurements of vertical concentration profiles of airborne particulate matter. Sci Total Environ 215:209–216. doi:10.1016/S0048-9697(98)00128-4

    Article  Google Scholar 

  • Hungarian standard No. MSZ 21454/1-83 (1983) Test of solid impurities in ambient atmosphere. Determination of settled dust mass. Hungarian Standards Institution, G 23:1–6

    Google Scholar 

  • Muxwothy AR, Scmidbauer E, Petersen N (2002) Magnetic properties and Mössbauer spectra of urban particulate matter: a case study from Munich, Germany. Geophys J Inter 150:558–570. doi:10.1046/j.1365-246X.2002.01725.x

    Article  Google Scholar 

  • Odabasi M, Muezzinoglu A, Bozlaker A (2002) Ambient concentrations and dry deposition fluxes of trace elements in Izmir, Turkey. Atmos Environ 36:5841–5851. doi:10.1016/S1352-2310(02)00644-1

    Article  Google Scholar 

  • Ódor L, Horváth I, Fügedi U (1997) Low-density geochemical mapping in Hungary. J Geochem Explor 60:55–66. doi:10.1016/S0375-6742(97)00025-3

    Article  Google Scholar 

  • Oke TR (1988) Street design and urban canopy layer climate. Energy Build 11:103–113. doi:10.1016/0378-7788(88)90026-6

    Article  Google Scholar 

  • Panigrahy PK, Goswami G, Panda JD, Panda RK (2003) Differential comminution of gypsum in cements ground in different mills. Cem Concr Res 33:945–947. doi:10.1016/S0008-8846(02)00992-4

    Article  Google Scholar 

  • Parameswaran K, Vijayakumar G (1994) Effect of atmospheric relative humidity on aerosol size distribution. Indian J Radio Space 23:175–188

    Google Scholar 

  • Popescu GC, Dumitrescu L (2000) Heavy metals distribution in dust from the central part of Bucharest. Rom J Miner Dep 79:85–87

    Google Scholar 

  • Remeteiova D, Smincakova E, Florian K (2007) Study of the chemical properties of gravitation dust sediments. Microchim Acta 156:109–113. doi:10.1007/s00604-006-0603-0

    Article  Google Scholar 

  • Sakata M, Marumoto K (2004) Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler. Environ Sci Technol 38:2190–2197. doi:10.1021/es030467k

    Article  Google Scholar 

  • Samet JM, Dominici F, Curriero FC, Zeger SL, Coursac I (2000) Fine particulate air pollution and mortality in 20 U.S. cities, 1987–1994. N Engl J Med 343:1742–1749. doi:10.1056/NEJM200012143432401

    Article  Google Scholar 

  • Shahin U, Yi SM, Paode RD, Holsen TM (2000) Long-term elemental dry deposition fluxes measured around Lake Michigan with an automated dry deposition sampler. Environ Sci Technol 34:1887–1892. doi:10.1021/es9907562

    Article  Google Scholar 

  • Silva M, Kyser K, Beauchemin D (2007) Enhanced flow injection leaching of rocks by focused microwave heating with in-line monitoring of released elements by inductively coupled plasma mass spectrometry. Anal Chim Acta 584:447–454. doi:10.1016/j.aca.2006.11.043

    Article  Google Scholar 

  • Sutherland RA (2000) Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ Geol 39:611–627. doi:10.1007/s002540050473

    Article  Google Scholar 

  • Tahri M, Bounakhla M, Ait Bouh H, Benyaich F, Noack Y, Essaid B (2012) Application of nuclear analytical techniques (XRF and NAA) to the evaluation of air quality in Moroccan cities—case of Meknes city. Carpath J Earth Environ 7(2):231–238

    Google Scholar 

  • UNEP and WHO (1992) Urban air pollution in megacities of the world. In: Earthwatch: global environmental system. Blackwell, Oxford

  • Vardoulakis S, Fisher BEA, Pericleous K, Gonzalez-Fresca N (2003) Modelling air quality in street canyons: a review. Atmos Environ 37:155–182. doi:10.1016/S1352-2310(02)00857-9

    Article  Google Scholar 

  • Vento SD, Dachs J (2007) Atmospheric occurrence and deposition of polycyclic aromatic hydrocarbons in the northeast tropical and subtropical Atlantic ocean. Environ Sci Technol 41:5608–5613. doi:10.1021/es0707660

    Article  Google Scholar 

  • Wang LJ, Lu XW, Lei K (2011) Speciation and transfer of heavy metals in street dust, soil and river sediment of Baoji city. Urban Environ Urban Ecol 24:22–26

    Google Scholar 

  • Yi SM, Shahin U, Sivadechathep J, Sofuoglu SC, Holsen TM (2001) Overall elemental dry deposition velocities measured around Lake Michigan. Atmos Environ 35:1133–1140. doi:10.1016/S1352-2310(00)00242-9

    Article  Google Scholar 

  • Young TM, Heeraman DA, Sirin G, Ashbaugh LL (2002) Re-suspension of soil as a source of airborne lead near industrial facilities and highways. Environ Sci Technol 36:2484–2490. doi:10.1021/es015609u

    Article  Google Scholar 

  • Zajzon N, Márton E, Sipos P, Kristály F, Németh T, kovács Kis V, Weiszburg T (2013) Integrated mineralogical and magnetic study of magnetic airborne particles from potential pollution sources in industrial-urban environment. Carpath J Earth Environ 8(1):179–186

    Google Scholar 

  • Zhao J, Peng P, Song J, Ma S, Sheng G, Fu J (2010) Research on flux of dry atmospheric falling dust and its characterization in a subtropical city, Guangzhou, South China. Air Qual Atmos Health 3:139–147. doi:10.1007/s11869-009-0062-y

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Hungarian Scientific Research Fund (OTKA K 76317 and K 75395). Péter Sipos also thanks for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Sipos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipos, P., Márton, E., May, Z. et al. Geochemical, mineralogical and magnetic characteristics of vertical dust deposition in urban environment. Environ Earth Sci 72, 905–914 (2014). https://doi.org/10.1007/s12665-013-3013-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-3013-8

Keywords

Navigation