Skip to main content
Log in

Physically based dynamic run-out modelling for quantitative debris flow risk assessment: a case study in Tresenda, northern Italy

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Quantitative landslide risk assessment requires information about the temporal, spatial and intensity probability of hazardous processes both regarding their initiation as well as their run-out. This is followed by an estimation of the physical consequences inflicted by the hazard, preferentially quantified in monetary values. For that purpose, deterministic hazard modelling has to be coupled with information about the value of the elements at risk and their vulnerability. Dynamic run-out models for debris flows are able to determine physical outputs (extension, depths, velocities, impact pressures) and to determine the zones where the elements at risk can suffer an impact. These results can then be applied for vulnerability and risk calculations. Debris flow risk has been assessed in the area of Tresenda in the Valtellina Valley (Lombardy Region, northern Italy). Three quantitative hazard scenarios for different return periods were prepared using available rainfall and geotechnical data. The numerical model FLO-2D was applied for the simulation of the debris flow propagation. The modelled hazard scenarios were consequently overlaid with the elements at risk, represented as building footprints. The expected physical damage to the buildings was estimated using vulnerability functions based on flow depth and impact pressure. A qualitative correlation between physical vulnerability and human losses was also proposed. To assess the uncertainties inherent in the analysis, six risk curves were obtained based on the maximum, average and minimum values and direct economic losses to the buildings were estimated, in the range of 0.25–7.7 million €, depending on the hazard scenario and vulnerability curve used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agliardi F, Crosta GB, Frattini P (2009) Integrating rockfall risk assessment and countermeasure design by 3D modelling techniques. Nat Hazards Earth Syst Sci 9:1059–1073. doi:10.5194/nhess-9-1059-2009

    Article  Google Scholar 

  • Agostoni S, Laffi R, Sciesa E (1997) Centri abitati instabili della provincia di Sondrio. CNR-GNDCI, Milan, p 59

    Google Scholar 

  • Azzola M, Tuia T (1983) Osservazione sui fenomeni franosi che hanno interessato i vigneti terrazzati a monte di Tresenda nel maggio 1983. Geol Tec 4:23–35

    Google Scholar 

  • Bell R, Glade T (2004) Quantitative risk analysis for landslides—examples from Bíldudalur, NW-Iceland. Nat Hazards Earth Syst Sci 4:117–131. doi:10.5194/nhess-4-117-2004

    Article  Google Scholar 

  • Blahut J, van Westen CJ, Sterlacchini S (2010) Analysis of landslide inventories for accurate prediction of debris-flow source areas. Geomorphology 119(1–2):36–51. doi:10.1016/j.geomorph.2010.02.017

    Article  Google Scholar 

  • Blahut J, Poretti I, De Amicis M, Sterlacchini S (2012) Database of geo-hydrological disasters for civil protection purposes. Nat Hazard 60(3):1065–1083. doi:10.1007/s11069-011-9893-6

    Article  Google Scholar 

  • Blahut J, Klimeš J, Vařilová Z (2013) Quantitative rockfall hazard and risk analysis in selected municipalities of the České Švýcarsko national park, northwestern Czechia. Geografie 118(3):205–220

    Google Scholar 

  • Camera C, Apuani T, Masetti M (2012a) Mechanisms of failure on terraced slopes: the Valtellina case (northern Italy). Landslides Online First. doi:10.1007/s10346-012-0371-3

    Google Scholar 

  • Camera C, Masetti M, Apuani T (2012b) Rainfall, infiltration, and groundwater flow in a terraced slope of Valtellina (northern Italy): field data and modelling. Environ Earth Sci 65(4):1191–1202. doi:10.1007/s12665-011-1367-3

    Article  Google Scholar 

  • Cancelli A, Nova R (1985) Landslides in soil debris cover triggered by rainstorms in Valtellina (Central Alps—Italy). In: Proceedings of 4th international conference and field workshop on landslides, The Japan Geological Society, Tokyo, pp 267–272

  • Cascini L, Bonnard Ch, Corominas J, Jibson R, Montero-Olarte J (2005) Landslide hazard and risk zoning for urban planning and development. In: Balkema (ed) Proceedings of the international conference on landslide risk management, Vancouver, 31 May–3 June 2005, pp 199–235

  • Castellanos AEA (2008) Local landslide risk assessment. In: Castellanos AEA Multi-scale landslide risk assessment in Cuba. ITC Dissertation, Utrecht University, Utrecht

  • Ceriani M, Lauzi S, Padovan N (1992) Rainfall and landslides in the Alpine area of Lombardia Region, Central Alps, Italy. In: Proceedings of the Internationales Symposium Interpraevent, Bern 2:9–20

  • Chang TC, Wang ZY, Chien YH (2010) Hazard assessment model for debris flow prediction. Environ Earth Sci 60(8):1619–1630. doi:10.1007/s12665-009-0296-x

    Article  Google Scholar 

  • Corominas J, Mavrouli O (2011) Quantitative risk assessmenent for buildings due to rockfalls: some achievements and challenges. In: Journée de Rencontre sur les Dangers Naturels. “2ème Journée de Rencontre sur les Dangers Naturels 2011″, Lausanne, p 1–8

  • Crosta GB, Dal Negro P, Frattini P (2003) Soil slips and debris flows on terraced slopes. Nat Hazards Earth Syst Sci 3:31–42. doi:10.5194/nhess-3-31-2003

    Article  Google Scholar 

  • Crosta GB, Frattini P, Fugazza F, Caluzzi L, Chen J (2005) Cost-benefit analysis for debris avalanche risk management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor & Francis, London, pp 533–541

    Google Scholar 

  • Cruden D, Fell R (1997) Landslide risk assessment. Proceedings of the international workshop on landslide risk, Honolulu, USA, Feb 1997

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87. doi:10.1016/S0013-7952(01)00093-X

    Article  Google Scholar 

  • DB2000 (2003) Database of the CM Valtellina di Tirano mapped at 1:2,000 scale. CM Valtellina di Tirano. CD-ROM. Available at: http://www.cmtirano.so.it/sistemainformativo.php

  • DEI (2006) Prezzi Tipologie Edilizie 2006. DEI Tipografia del Genio Civilie. CD-ROM

  • FLO-2D (2009) Reference manual 2009. FLO-2D Software Inc., p 73. Available at: http://www.flo-2d.com/wp-content/uploads/FLO-2D-Reference-Manual-2009.pdf

  • Fuchs S, Kaitna R, Scheidl C, Hübl J (2008) The application of the risk concept to debris flow hazards. Geomech Tunn 1(2):120–129

    Article  Google Scholar 

  • Giacomelli L (1987) Speciale Valtellina 1987: Cronaca, storia, commenti. Notiziario della Banca Popolare di Sondrio, No. 45, Bergamo, p 227

  • Glade T, Anderson M, Crozier MJ (eds) (2005) Landslide hazard and risk. John Wiley, Chichester

    Google Scholar 

  • Govi M, Mortara G, Sorzana P (1984) Eventi idrologici e frane. Geologia Applicata e Idrogeologia, XCVIII, p 3

  • Gumbel EJ (ed) (2004) Statistics of extremes. Reprint of the 1958 edition. Dover, Mineola

    Google Scholar 

  • Guzzetti F, Crosta G, Marchetti M, Reichenbach P (1992) Debris flows triggered by the July, 17–19, 1987 storm in the Valtellina area (northern Italy). In: International symposium interpraevent, Bern, Switzerland, 1992, pp 193–203

  • Guzzetti F, Reichenbach P, Ghigi S (2004) Rockfall hazard and risk assessment in the Nera River Valley, Umbria Region, Central Italy. Environ Manag 34(2):191–208. doi:10.1007/s00267-003-0021-6

    Article  Google Scholar 

  • Hürlimann M, Copons R, Altimir J (2006) Detailed debris flow hazard assessment in Andorra: a multidisciplinary approach. Geomorphology 78:359–372. doi:10.1016/j.geomorph.2006.02.003

    Article  Google Scholar 

  • Jaiswal P, van Westen CJ, Jetten V (2010) Quantitative landslide hazard assessment along a transportation corridor in southern India. Eng Geol 116(3–4):236–250. doi:10.1016/j.enggeo.2010.09.005

    Article  Google Scholar 

  • Jakob M, Stein D, Ulmi M (2012) Vulnerability of buildings to debris flow impact. Nat Hazard 60:241–251. doi:10.1007/s11069-011-0007

    Article  Google Scholar 

  • Khan YA, Lateh H, Baten MA, Kamil AA (2012) Critical antecedent rainfall conditions for shallow landslides in Chittagong City of Bangladesh. Environ Earth Sci 60(8):1619–1630. doi:10.1007/s12665-011-1483-0

    Google Scholar 

  • Lara M, Sepulveda SA (2010) Landslide susceptibility and hazard assessment in San Ramn Ravine, Santiago de Chile, from an engineering geological approach. Environ Earth Sci 67(1):97–106. doi:10.1007/s12665-009-0264-5

    Google Scholar 

  • Leroi E, Bonnard Ch, Fell R, McInnes R (2005) A framework for landslide risk assessment and management. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Landslide risk management. Taylor & Francis, London, pp 159–198

    Google Scholar 

  • Li Z, Huang H, Nadim F, Xue Y (2010) Quantitative risk assessment of cut-slope projects under construction. J Geotech Geoenviron Eng. doi:10.1061/(ASCE)GT.1943-5606.0000381

    Google Scholar 

  • Luino F, Nigrelli G, Biddoccu M, Cirio CG, Di Palma M, Missaglia M, Fassi P (2008) Definizione delle soglie pluviometriche d′innesco di frane superficiali e colate torrentizie: accorpamento per aree omogenee. IRER, Milano, p 125

    Google Scholar 

  • Malet J-P, Laigle D, Remaître A, Maquaire O (2005) Triggering conditions and mobility of debris-flows associated to complex earthflows. Geomorphology 66(1–4):215–235. doi:10.1016/j.geomorph.2004.09.014

    Article  Google Scholar 

  • Michael-Leiba M, Baynes F, Scott G, Granger K (2003) Regional landslide risk to the Cairns community. Nat Hazard 30(2):233–249. doi:10.1023/A:1026122518661

    Article  Google Scholar 

  • Muir I, Ho KSS, Sun HW, Hui THH, Koo YC (2006) Quantitative risk assessment as applied to natural terrain landslide hazard management in a mid-levels catchment, Hong Kong. In: Nadim F, Pottler R, Einstein H, Klapperich H, Kramer S (eds) “Geohazards”, ECI Symposium Series, P07, p 8

  • O’Brien JS, Julien PY (1988) Laboratory analysis of mudflow properties. J Hydraul Eng 114(8):877–887. doi:10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  • Quan Luna B, Blahut J, van Westen CJ, Sterlacchini S, van Asch TWJ, Akbas SO (2011) The application of numerical debris flow modelling for the generation of physical vulnerability curves. Nat Hazards Earth Syst Sci 11:2047–2060. doi:10.5194/nhess-11-2047-2011 2011

    Article  Google Scholar 

  • Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94(3–4):496–507. doi:10.1016/j.geomorph.2006.10.041

    Article  Google Scholar 

  • Sterlacchini S, Frigerio S, Giacomelli P, Brambilla M (2007) Landslide risk analysis: a multi- disciplinary methodological approach. Nat Hazards Earth Syst Sci 7:657–675. doi:10.5194/nhess-7-657-2007

    Article  Google Scholar 

  • van Westen CJ, van Asch TWJ, Soeters R (2006) Landslide hazard and risk zonation—why is it still so difficult? Bull Eng Geol Environ 65:167–184. doi:10.1007/s10064-005-0023-0

    Article  Google Scholar 

  • Wong HN, Ko FWY (2005) Landslide risk assessment—application and practice (SPR 4/2005). Geotechnical Engineering Office, Hong Kong, p 311

    Google Scholar 

  • Zêzere JL, Garcia RAC, Oliveira SC, Reis E (2008) Probabilistic landslide risk analysis considering direct costs in the area north of Lisbon (Portugal). Geomorphology 94(3–4):467–495. doi:10.1016/j.geomorph.2006.10.040

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their valuable comments, which improved the quality of the manuscript. We also thank to Dr. H. Kross and S.L. Manuela for fruitful discussions on the early versions of the manuscript. This work has been supported by the Marie Curie Research and Training Network “Mountain Risks” funded by the European Commission (2007–2010, Contract MCRTN-35098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Blahut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quan Luna, B., Blahut, J., Camera, C. et al. Physically based dynamic run-out modelling for quantitative debris flow risk assessment: a case study in Tresenda, northern Italy. Environ Earth Sci 72, 645–661 (2014). https://doi.org/10.1007/s12665-013-2986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2986-7

Keywords

Navigation