Skip to main content

Advertisement

Log in

Distributions of total, inorganic and organic phosphorus in surface and recent sediments of the sub-tropical and semi-pristine Guaratuba Bay estuary, SE Brazil

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This study addresses the distribution of total phosphorus (TP) and its inorganic (IP) and organic (OP) fractions, grain-size and organic matter of surface and recent sediments, coupled to the behavior of total and dissolved inorganic phosphorus (TP and DIP) of the water column, of the semi-pristine Guaratuba Bay estuary, SE Brazil. Surface sediment samples were taken at 43 sites spread along the estuarine gradient and recent sediments from 3 short (35 cm long) cores from the upper, central and lower portions of the estuary, respectively. Highest TP and IP concentrations of surface sediments were detected within the upper sector and the transition zone between the upper and central sectors, all characterized by fine sediments, low salinities and water depths. In contrast, the lower sector and its narrow and deep tidal channel, subject to more intense tidal forcing, exhibited a higher fraction of sandy sediments with lower TP, IP and OP contents. In spite of the spatial variability in sediment grain size, IP corresponded to the major fraction of TP in all estuarine sectors and both TP and IP correlated significantly with the fine sedimentary (silt + clay) grain-size fraction. The fine surface sediments acted as a trap for IP at the fresh water–low salinity interface, which also corresponded to the region of a DIP sink in surface waters. In general, the short sediment cores showed that TP and IP contents increased from 15 cm depths to the top layer. Published sedimentation rates from additional cores taken at the sites of the short cores of this study, implied that depositional alterations of TP and IP increased during the early 1970s, which corresponded to the onset of anthropogenic disturbances from crop plantations in the lowland plains of the river end-member and urbanization at the estuary’s mouth and along the adjacent coast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvera-Azcarate A, Ferreira JG, Nunes JP (2003) Modelling eutrophication in mesotidal and macrotidal estuaries. The role of intertidal seaweeds. Estuar Coast Shelf Sci 57:715–724. doi:10.1016/S0272-7714(02)00413-4

    Article  Google Scholar 

  • Andrieux-Loyer F, Aminot A (2001) Phosphorus forms related to sediment grain size and geochemical characteristics in French Coastal areas. Estuar Coast Shelf S 52:617–629. doi:10.1006/ecss.2001.0766

    Article  Google Scholar 

  • Ashraf M, Edwin PL, Meenakumari B (2006) Studies on the seasonal changes of phosphorus in the marine environments off Cochin. Environ Int 32:159–164. doi:10.1016/j.envint.2005.08.006

    Article  Google Scholar 

  • Aspila KI, Agemian H, Chau ASY (1976) A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–197

    Article  Google Scholar 

  • Atkinson MJ (1987) Low phosphorus sediments in a hypersaline marine bay. Estuar Coast Shelf Sci 24:335–347

    Article  Google Scholar 

  • Avilés A, Niell FX (2005) Pattern of phosphorus forms in a Mediterranean shallow estuary: effects of flooding events. Estuar Coast Shelf Sci 64:786–794. doi:10.1016/j.ecss.2005.05.002

    Article  Google Scholar 

  • Aviles A, Rodero J, Amores V, Vicente I, Rodriguez I, Niell X (2006) Factors controlling phosphorus speciation in a Mediterranean basin (River Guadalfeo, Spain). J Hydro 331:396–408. doi:10.1016/j.jhydrol.2006.05.024

    Article  Google Scholar 

  • Aydin I, Aydin F, Saydut A, Hamamci C (2009) A sequential extraction to determine the distribution of phosphorus in the seawater and marine surface sediment. J Hazard Mater 168:664–669. doi:10.1016/j.jhazmat.2009.02.095

    Article  Google Scholar 

  • Barcellos RL, Furtado V (2005) Distribuição e características do fósforo sedimentar no sistema estuarino lagunar Cananéia-Iguape. Geochim Bras 19(1):22–36

    Google Scholar 

  • Borges AC, Sanders CJ, Santos HLR, Araripe DR, Machado W, Patchineelam SR (2009) Eutrophication history of Guanabara Bay (SE Brazil) recorded by phosphorus flux to sediments from a degraded mangrove area. Mar Pollut Bull 58:1739–1765. doi:10.1016/j.marpolbul.2009.07.025

    Article  Google Scholar 

  • Bourton JD, Liss PS (1976) Estuarine chemistry. Academic Press, London

    Google Scholar 

  • Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Global Biogeochem Cycles 23:1–16. doi:10.1029/2009GB003576

    Article  Google Scholar 

  • Brandini N (2008) Biogeoquimica da Baía de Guaratuba. PhD Thesis, Universidade Federal Fluminense

  • Bricker SB, Ferreira JG, Simas T (2003) An integrated methodology for assessment of estuarine trophic status. Ecol Model 169:39–60. doi:10.1016/S0304-3800(03)00199-6

    Article  Google Scholar 

  • Caraco N, Cole J, Likens GE (1990) A comparison of phosphorus immobilization in sediments of freshwater and coastal marine systems. Biogeochemistry 9:277–290. doi:10.1007/BF00000602

    Article  Google Scholar 

  • Carol ES, Kruse EE, Tavani EL (2012) Physicochemical characterization of sediments from the coastal wetland of Samborombón Bay, Argentina. J South Am Earth Sci 34:26–32. doi:10.1016/j.jsames.2011.07.008

    Article  Google Scholar 

  • Carreira RS, Wagener AR (1998) Speciation of sewage derived phosphorus in coastal sediments from Rio de Janeiro, Brazil. Mar Pollut Bull 36(10):818–827. doi:10.1016/S0025-326X(98)00062-9

    Article  Google Scholar 

  • Cha H, Lee C, Kim B, Choi M, Ruttenberg K (2005) Early diagenetic redistribution and burial of phosphorus in the sediments of the southwestern East Sea (Japan Sea). Mar Geol 216(3):127–143. doi:10.1016/j.margeo.2005.02.001

    Article  Google Scholar 

  • Chai C, Yu Z, Song X, Cao X (2006) The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China. Hydrobiologia 563:313–328. doi:10.1007/s10750-006-0021-7

    Article  Google Scholar 

  • Cloern JE (2001) Our envolving conceptual model of the coastal eutrophication problem. Mar Ecol Prog Ser 210:223–253. doi:10.3354/meps210223

    Article  Google Scholar 

  • Clavero V, Jose J, Palomo L, Fernandez JA, Niell FX (1999) Water management and climate changes increases the phosphorus accumulation in the small shallow estuary of the Palmones River (southern Spain). Sci T Environ 228:193–202. doi:10.1016/S0048-9697(99)00045-5

    Article  Google Scholar 

  • Coelho J, Flindt M, Jensen H, Lillebo A, Pardal M (2004) Phosphorus speciation and availability in intertidal sediments of a temperate estuary: relation to eutrophication and annual P-fluxes. Estuar Coast Shelf Sci 61(4):583–590. doi:10.1016/j.ecss.2004.07.001

    Article  Google Scholar 

  • Cotovicz Junior LC, Brandini N, Knoppers BA, Mizerkowski BD, Sterza JM, Ovalle ARC, Medeiros PRP (2013) Assessment of the trophic status of four coastal lagoons and one estuarine delta, eastern Brazil. Environ Monit Assess 185:3279–3311. doi:10.1007/s10661-012-2791-x

    Article  Google Scholar 

  • Crossland CJ, Kremer HH, Lindeboom HJ, Crossland JI, Le Tissier MDA (2005) Coastal fluxes in the anthropocene. The land-ocean interactions in the coastal zone project of the international geosphere-biosphere programme series: global change—the IGBP series. Springer, Berlin

    Google Scholar 

  • Daesslé LW, Camacho-Ibar VF, Carriquiry JD, Ortiz-Hernández MC (2004) The geochemistry and sources of metals and phosphorus in the recent sediments from the Northern Gulf of California. Cont Shelf Res 24(17):2093–2106. doi:10.1016/j.csr.2004.06.022

    Article  Google Scholar 

  • Fang TH (2000) Partitioning and behavior of different forms of phosphorus in the Tanshui estuary and one of its tributar- ies, Northern Taiwan. Estuar Coast Shelf Sci 50:689–701. doi:10.1006/ecss.1999.0604

    Article  Google Scholar 

  • Faul KL, Paytan A, Delaney ML (2005) Phosphorus distribution in sinking oceanic particulate matter. Mar Chem 97(3–4):307–333. doi:10.1016/j.marchem.2005.04.002

    Article  Google Scholar 

  • Fisher TR, Carlson PR, Barber RT (1982) Sediment nutrient regeneration in three North Carolina estuaries. Estuar Coast Shelf Sci 14:101–116. doi:10.1016/S0302-3524(82)80069-8

    Article  Google Scholar 

  • Fisher TR, Hagy JD, Boynton WR, Williams MR (2006) Cultural eutrophication in the Choptank and Patuxent estuaries of Chesapeake Bay. Limnol Oceanogr 51:435–447. doi:10.4319/lo.2006.51.1_part_2.0435

    Article  Google Scholar 

  • Folk R, Ward W (1957) Brazos river bar: a study in the significance of grain size parameters. J Sediment Res 27:3–26

    Article  Google Scholar 

  • Fox LE (1990) Geochemistry of dissolved phosphate in the Sepik River Estuary, Papua, New Guinea. Geochim Cosmochim Acta 54:1019–1024. doi:10.1016/0016-7037(90)90435-N

    Article  Google Scholar 

  • Frankowski L, Bolałek J (1997) Phosphate desorption from the sediments in the Pomeranian Bay (Southern Baltic). Oceanol Stud 1:205–214

    Google Scholar 

  • Frankowski L, Bolałek J, Szostek A (2002) Phosphorus in bottom sediments of Pomeranian Bay (Southern Baltic—Poland). Estuar Coast Shelf Sci 54(6):1027–1038. doi:10.1006/ecss.2001.0874

    Article  Google Scholar 

  • Gireeshkumar TR, Deepulal PM, Chandramohanakumar N (2012) Phosphorous speciation in surface sediments of the Cochin estuary. Environ Monit Assess. doi:10.1007/s10661-012-2729-3

    Google Scholar 

  • Godoy JM, Moreira I, Bragança MJ, Wanderley C, Mendes LB (1997) A study of Guanabara Bay sedimentation rates. J Radioanal Nucl Chem 227(1–2):157–160. doi:10.1007/BF02386450

    Google Scholar 

  • Golterman HL, Oude NT (1991) Eutrophication of lakes, rivers and coastal seas. In: Hutzinger O (ed) The handbook of environmental chemistry, vol 5. Springer-Verlag, New York, pp 79–113

    Google Scholar 

  • Grasshof K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Gunduz B, Aydın F, Aydın I, Hamamci C (2011) Study of phosphorus distribution in coastal surface sediment by sequential extraction procedure (NE Mediterranean Sea, Antalya-Turkey). Microchem J 98(1):72–76. doi:10.1016/j.microc.2010.11.006

    Article  Google Scholar 

  • Hecky RE, Kilman P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments. Limnol Oceanogr 33:796–822. doi:10.4319/lo.1988.33.4_part_2.0796

    Article  Google Scholar 

  • Huang XP, Huang LM, Yue WZ (2003) The characteristics of nutrients and eutrophication in the Pearl River estuary, South China. Mar Pollut Bull 47:30–36. doi:10.1016/S0025-326X(02)00474-5

    Article  Google Scholar 

  • Jennerjahn TC, Ittekkot V (2002) Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89:23–30. doi:10.1007/s00114-001-0283-x

    Article  Google Scholar 

  • Jensen HS, Kristensen P, Jeppesen E, Skytthe A (1992) Iron: phosphorus ratio in surface sediment as an indicator of phosphate release from aerobic sediments in shallow lakes. Hydrobiologia 236:731–743. doi:10.1007/BF00026261

    Article  Google Scholar 

  • Knoppers BA (1994) Aquatic primary production in coastal lagoons. In: Kjerfve B (ed) Coastal lagoons processes. Elsevier, Amsterdam, pp 243–286

    Chapter  Google Scholar 

  • Knoppers BA, Carmouze JP, Moreira-Turcqo PF (1999) Nutrient dynamics, metabolism and eutrophication of lagoons along the east Fluminense coast, state of Rio de Janeiro, Brazil. In: Knoppers BA, Bidone ED, Abrão JJ (eds) Environmental geochemistry of coastal lagoon systems of Rio de Janeiro, Brazil. FINEP/UFF, Rio de Janeiro, pp 123–154

    Google Scholar 

  • Liu SM, Zhang J, Li DJ (2004) Phosphorus cycling in sediments of the Bohai and Yellow Seas. Estuar Coast Shelf Sci 59(2):209–218. doi:10.1016/j.ecss.2003.08.009

    Article  Google Scholar 

  • Machado WT, Lacerda LD (2004) Overview of biogeochemical controls and concerns on trace metal accumulation in mangrove sediments. In: Lacerda LD, Santelli RE, Duursma E, Abrão JJ (eds) Environmental geochemistry in tropical and subtropical environments. Springer-Verlag, Berlin-Heidelberg, pp 319–334

    Chapter  Google Scholar 

  • Mackenzie FT, Ver M, Lerman A (1998) Coupled biogeochemical cycles of carbon, nitrogen, phosphorus and sulfur in the land-ocean atmosphere system. In: Galloway JN, Melillo JM (eds) Asian change in the context of global climate changelo. Cambridge Univ. Press, New York, pp 42–100

    Google Scholar 

  • Marins RV, Paula Filho FJ, Rocha CA (2007) Geoquímica de fósforo como indicadora da qualidade ambiental e dos procesos estuarinos do Rio Jaguaribe–Costa Nordeste Oriental Brasileira. Quim Nova 30(5):1208–1214. doi:10.1590/S0100-40422007000500029

    Article  Google Scholar 

  • Marone E, Noernberg MA, Santos I et al (2004) Hydrodynamic of Guaratuba Bay—PR, Brazil. J Coast Res Special Issue 39:1879–1883

    Google Scholar 

  • Martin GD, Muraleedharan KR, Vijay JG, Rejomon G, Madhu NV, Shivaprasad A et al (2010) Formation of anoxia and denitrification in the bottom waters of a tropical estuary, southwest coast of India. Biogeosciences Discuss 7:1751–1782. doi:10.5194/bgd-7-1751-2010

    Article  Google Scholar 

  • Meybeck M (1993) C, N, P and S in rivers: from sources to global inputs. In: Wollast R, Mackenzie FT, Chou L (eds) Interactions of C, N, P and S biochemical cycles and global change. Springer, Berlin, pp 163–193

    Chapter  Google Scholar 

  • Mizerkowski BD (2011) Assessment of the estuarine waters of the state of Paraná (Southern Brazil): descriptive approach, trophic status and monitoring techniques. http://d-nb.info/1013147367/34. Accessed 03 Nov 2011

  • Mizerkowski BD, Machado EC, Brandini N, Nazario MG, Bonfim KV (2012) Environmental water quality assessment in Guaratuba bay, state of Paraná, southern Brazil. Braz J Ocean 60(2):109–115. doi:10.1590/S1679-87592012000200001

    Article  Google Scholar 

  • Monbet P, Brunskill GJ, Zagorskis I, Pfitzner J (2007) Phosphorus speciation in the sediment and mass balance for the central region of the Great Barrier Reef continental shelf (Australia). Geochim Cosmochim Acta 71:2762–2779

    Article  Google Scholar 

  • Morris AW, Baie AJ, Howland RJM (1981) Nutrient distributions in an estuary: evidence of chemical precipitation of dissolved silicate and phosphate. Estuar Coast Shelf Sci 12:205–216. doi:10.1016/S0302-3524(81)80097-7

    Article  Google Scholar 

  • Nixon SW (1981) Remineralization and nutrient cycling in coastal marine ecosystems. In: Nelson BW, Cronin LE (eds) Nutrient enrichment in estuaries. Humana Press, New Jersey, pp 111–138

    Chapter  Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219

    Google Scholar 

  • Nixon SW, Ammerman JW, Atkinson LP et al (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35:141–180

    Article  Google Scholar 

  • OECD - Organization for Economic Co-operation and Development (1982) Eutrophication of water, monitoring, assessment and control. OECD publications, Paris

    Google Scholar 

  • Pagliosa PR, Fonseca A, Bosquilha GE, Braga ES, Barbosa FA (2005) Phosphorus dynamics in water and sediments in urbanized and non-urbanized rivers in Southern Brazil. Mar Pollut Bull 50(9):965–974. doi:10.1016/j.marpolbul.2005.04.005

    Article  Google Scholar 

  • Pellens IC, Belloto VR, Kuroshima KN, Abreu JG (1998) Resultados preliminares da distribuição de fósforo e suas formas nos sedimentos da Plataforma Continental do Estado de Santa Catarina. Notas Tec Facimar 2:51–60

    Google Scholar 

  • Rast W, Thornton JA (1998) Trends in eutrophication research and control. Hydrol Process 10(2):295–313. doi:10.1002/(SICI)1099-1085(199602)10:2<295:AID-HYP360>3.0.CO;2-F

    Article  Google Scholar 

  • Russell MJ, Weller DE, Jordan TE, Sigwart KJ, Sullivan KJ (2008) Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochemistry 88:285–304. doi:10.1007/s10533-008-9212-9

    Article  Google Scholar 

  • Ruttenberg KC (2005) The global phosphorus cycle. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier Publishers, Amsterdam, pp 585–643

    Google Scholar 

  • Sabadini-Santos E, Knoppers BA, Oliveira E, Leipe T, Santelli RE (2009) Regional geochemical baselines for sedimentary metals of the tropical São Francisco estuary, NE-Brazil. Mar Pollut Bul 58(4):601–634. doi:10.1016/j.marpolbul.2009.01.011

    Article  Google Scholar 

  • Sanders CJ, Santos IR, Silva-Filho EV, Patchineelam SR (2006) Mercury flux to estuarine sediments, derived from Pb-210 and Cs-137 geochronologies (Guaratuba Bay, Brazil). Mar Pollut Bull 52(9):1085–1089. doi:10.1016/j.marpolbul.2006.06.004

    Article  Google Scholar 

  • SANEPAR – Companhia de Saneamento Paranaense (Sanitation Company of Paraná State) (2003) http://www.sanepar.com.br. Acessed 25 June 2011

  • Santos ML, Saraiva ALL, Delfino IB, Antunes LC et al (2010) Avaliação das Formas de Fósforo nos Sedimentos Superficiais da Plataforma Continental do Rio Amazonas. Rev Gest Cost Integr 10(4):589–596

    Article  Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa

    Google Scholar 

  • Suguio K (1973) Introdução à sedimentologia. Universidade de São Paulo, São Paulo

    Google Scholar 

  • Tiessen H (1995) Introduction and synthesis. In: Tiessen H (ed) Phosphorus in the global environment, transfers, cycles and management. Wiley, Chichester, pp 1–6

    Google Scholar 

  • Turner A, Millward GE (2002) Suspended particles: their role in estuarine biogeochemical cycles. Est Coast Shelf Sci 55:857–883. doi:10.1006/ecss.2002.1033

    Article  Google Scholar 

  • Vaithiyanathan P, Jha PK, Subramaniam V (1993) Phosphorus distribution in the sediments of the Hooghly (Ganges) Estuary, India. Est Coast Shelf Sci 37:603–614. doi:10.1006/ecss.1993.1076

    Article  Google Scholar 

  • Vollenweider RA (1968) Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication. OECD publications, Paris

    Google Scholar 

  • Vollenweider RA, Giovanardi F, Rinaldi A, Montanari G (1998) Characterization of the trophic conditions of marine coastal areas with special reference to the NW Adriatic Sea; proposal for a trophic scale, turbidity and generalized water quality index. Environmetrics 9:329–357

    Article  Google Scholar 

  • Wang P, He M, Lin C, Men B, Liu Ruimin, Quan X, Zhifeng Yang Z (2009) Phosphorus distribution in the estuarine sediments of the Daliao River, China. Est Coast Shelf Sci 84:246–252. doi:10.1016/j.ecss.2009.06.020

    Article  Google Scholar 

  • Whitall D, Bricker S, Ferreira J, Nobre AM, Simas T, Silva M (2007) Assessment of eutrophication in estuaries: pressure-state-response and nitrogen source apportionment. Environ Manag 40(4):678–690. doi:10.1007/s00267-005-0344-6

    Article  Google Scholar 

  • Yilmaz E, Koç C (2012) A study on seasonal changes of phosphorus fractions in marine sediments of the Akyaka Beach in Gökova Bay, Turkey. Clean Technol Environ Policy 14(2):299–307. doi:10.1007/s10098-011-0402-0

    Article  Google Scholar 

  • Zem RC, Pathineelam SM, Marone E (2005) Morfologia e dinâmica de sedimentos na baía de Guaratuba, PR. http://www.abequa.org.br/trabalhos/0190_zem_et_al._abequa_2005_.pdf. Acessed 07 June 2012

  • Zhou J, Wu Y, Kang Q, Zhang J (2007) Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuar Coast Shelf Sci 71:47–59. doi:10.1016/j.ecss.2006.08.012

    Article  Google Scholar 

  • Zhu Y, Zhang R, Wu F, Qu X, Xie F, Fu Z (2012) Phosphorus fractions and bioavailability in relation to particle size characteristics in sediments from Lake Hongfeng, Southwest China. Environ Earth Sci. doi:10.1007/s12665-012-1806-9

    Google Scholar 

  • Zwolsman JJG (1994) Seasonal variability and biogeochemistry of phosphorus in the Scheldt Estuary, South-west Netherlands. Estuar Coast Shelf Sci 39:227–248. doi:10.1006/ecss.1994.1061

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank all the technicians and students involved in the acquisition of samples and laboratory assistance. L.C. Cotovicz Junior is a Ph.D. Scholar of CNPq and N. Brandini a Post-Doc from CAPES. B. Knoppers is a Senior Researcher from CNPq. Funding was obtained from CNPq. We thank the Centro de Estudos do Mar (CEM-UFPR) for all the support in the sampling campaigns. We are highly grateful to the two anonymous reviewers for their time consuming input and valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Carlos Cotovicz Junior.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 67 kb)

Supplementary material 2 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cotovicz Junior, L.C., Machado, E.d., Brandini, N. et al. Distributions of total, inorganic and organic phosphorus in surface and recent sediments of the sub-tropical and semi-pristine Guaratuba Bay estuary, SE Brazil. Environ Earth Sci 72, 373–386 (2014). https://doi.org/10.1007/s12665-013-2958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2958-y

Keywords

Navigation