Skip to main content

Advertisement

Log in

Application of empirical and semi-analytical algorithms to MERIS data for estimating chlorophyll a in Case 2 waters of Lake Erie

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Lake Erie is biologically the most active lake among the Great Lakes of North America, experiencing seasonal harmful algal blooms (HABs). The early detection of HABs in the Western Basin of Lake Erie (WBLE) requires a more efficient and accurate monitoring tool. Remote sensing is an efficient tool with high spatial and temporal coverage that can allow accurate and timely detection of the HABs. The WBLE is heavily influenced by the surrounding terrestrial ecosystem via rivers such as the Sandusky River and the Maumee River. As a result, the optical properties of the WBLE are influenced by multiple color producing agents (CPAs) such as phytoplankton, colored dissolved organic matter (CDOM), organic detritus, and terrigenous inorganic particles. The diversity of the CPAs and their non-linear interactions makes these waters optically complex, and the task of optical remote sensing for retrieving estimates of CPAs more challenging. Chlorophyll a, which is the primary light harvesting pigment in all phytoplankton, is used as a proxy for algal biomass. In this study, several published remote sensing algorithms and band ratio models were applied to the reflectance data from the full resolution MERIS sensor to remotely estimate chlorophyll a concentrations in the WBLE. Efficiency of the sensor and the algorithms performance were tested through a least squares regression and residual analysis. The results indicate that, among the suite of existing bio-optical models, the Simis semi-analytical algorithm provided the best model results for measures of algal biomass in the optically complex WBLE with R 2 of 0.65, RMSE 0.85 μg/l, (n = 71, P < 0.05). The superior results of this model in detecting chlorophyll a are attributed to several factors including optimizing spectral regions that are less sensitive to CDOM and the incorporation of correction factors such as absorption effects due to pure water (a w), backscatter (b b) from suspended matter and interference due to phycocyanin (δ), a major accessory pigment in the WBLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiken J, Moore G (2000) ATBD Case 2 s bright pixel atmospheric correction. POTN-MEL-GS-0005, Center for Coastal & Marine Sciences, Plymouth Marine Laboratory, UK, p 14

    Google Scholar 

  • Ali KA, Witter DL, Ortiz JD (2012) Multivariate approach to estimate color producing agents in Case 2 waters using first-derivative spectrophotometer data. Geocarto International Taylor Francis. doi:10.1080/10106049.2012.743601

  • Babin M, Berthon J, Kopelevich OV, Campbell JW (2000) Remote sensing of Ocean colour in coastal, and other optically-complex waters. Reports of the International Ocean-Colour Coordination Group, IOCCG, Dartmouth, NS, Canada, Rep. 3

  • Babin M, Stramski D, Ferrari GM, Claustre H, Bricaud A, Obolensky G (2003) Variations in the light absorption coefficients of phytoplankton, non-algal particles, and dissolved organic matter in coastal waters around Europe. J Geophys Res 108(C7):3211–3230

    Article  Google Scholar 

  • Bale AJ, Tocher MD, Weaver R, Hudson SJ, Aiken J (1994) Laboratory measurements of the spectral properties of estuarine suspended particles. Aquat Ecol 28(3):237–244

    Article  Google Scholar 

  • Becker R, Sultan MI, Boyer GL, Twiss MR, Konopko E (2009) Mapping cyanobacterial blumes in the Great Lakes using MODIS. J Great Lakes Res 35:447–453. doi:10.1016/j.jglr.2009.05.007

    Article  Google Scholar 

  • Binding CE, Jerome JH, Bukata RP, Booty WG (2008) Spectral absorption properties of dissolved and particulate matter in Lake Erie. Remote Sens Environ 112(4):1702–1711

    Article  Google Scholar 

  • Brittain SM, Wang JL, Babcock J et al (2000) Isolation and characterization of microcystins, cyclic heptapeptide hepatotoxins from a Lake Erie strain of Microcystis aeruginosa. J Great Lakes Res 26(3):241–249

    Article  Google Scholar 

  • Bukata RP, Jerome JH, Kondratyev KY, Pozdnyakov DV (1994) Optical properties and remote sensing of inland and coastal waters. CRC Press, Boca Raton 362

    Google Scholar 

  • Dall’Olmo G, Gitelson AA (2005) Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results. Appl Opt 44(3):412–422

    Article  Google Scholar 

  • Dekker AG (1993) Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing. Amsterdam Free Universiteit. http://en.scientificcommons.org/34398616

  • Dekker AG, Hoogenboom HJ, Goddijn LM, Malthus TJM (1997) The relation between inherent optical properties and reflectance spectra in turbid inland waters. Remote Sens Rev 15(1):59–74

    Article  Google Scholar 

  • Doerffer R, Fischer J (1994) Concentrations of chlorophyll, suspended matter and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods. J Geophys Res 99(C4):7457–7466

    Article  Google Scholar 

  • Doerffer R, Schiller H (2007) The MERIS case 2 water algorithms. Int J Remote Sens 28(3):517–535

    Article  Google Scholar 

  • Arnone R, Babin M, Dowell, MD, Barnard AH, Lee S, Cannizzaro JP, Berthon JF, Kopelevich OV, Campbell JW (2006) Remote sensing of inherent optical properties: fundamentals, test of algorithms, and applications. Reports of the International Ocean-Color Coordination Group No 5

  • El-Alem A, Chokmani K, Laurion I, El-Adlouni SE (2012) Comparative analysis of four models to estimate chlorophyll-a concentration in Case-2 waters using MODerate resolution imaging spectroradiometer (MODIS) imagery. Remote Sens 4(8):2373–2400. doi:10.3390/rs4082373

    Article  Google Scholar 

  • Gilerson AA, Gitelson AA, Zhou J, Gurlin D, Moses WJ, Ioannou I, Ahmed SA (2010) “Algorithms for remote estimation of chlorophyll-a in coastal and inland waters using red and near infrared bands”. Natural Resour Paper 286. http://digitalcommons.unl.edu/natrespapers/286

  • Gitelson A (1992) The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration. Int J Remote Sens 13(17):3367–3373

    Article  Google Scholar 

  • Gitelson AA, Yacobi YZ, Schalles JF, Rundquist DC, Han L, Stark R (2000) Remote estimation of phytoplankton density in productive waters. Arch Hydrobiol Spec Issues Adv Limnol 55:121–136

    Google Scholar 

  • Gitelson AA, Schalles JF, Hladik CM (2007) Remote chlorophyll-a retrieval in turbid, productive estuaries: chesapeake bay case study. Remote Sens Environ 109(4):464–472

    Article  Google Scholar 

  • Gitelson AA, Dall’Olmo G, Moses W, Rundquist DC, Barrow T, Fisher TRA (2008) Simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation. Remote Sens Environ 112(9):3582–3593

    Article  Google Scholar 

  • Gons HJ (1999) Optical teledetection of chlorophyll a in turbid inland waters. Environ Sci Technol 33(7):1127–1132

    Article  Google Scholar 

  • Gons HJ, Rijkeboer M, Ruddick KGA (2002) Chlorophyll-retrieval algorithm for satellite imagery (medium resolution imaging spectrometer) of inland and coastal waters. J Plankton Res 24(9):22–947

    Article  Google Scholar 

  • Gordon HR, Morel AY (1983) Remote assessment of ocean color for interpretation of satellite visible imagery: a review. Spring-Verlag, New York 114

    Book  Google Scholar 

  • Gordon HR, Wang M (1994) Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with Sea WiFS: a preliminary algorithm. Appl Opt 33(3):443–452

    Article  Google Scholar 

  • Gordon HR, Brown OB, Evans RH, Brown JW, Smith RC, Baker KS (1988) A semi-analytic radiance model of ocean color. J Geophys Res 93(D9):10909–10924

    Article  Google Scholar 

  • Gower JFR, Doerffer R, Borstad GA (1999) Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. Int J Remote Sens 20(9):1771–1786

    Article  Google Scholar 

  • Gurlin D (2012) Near infrared-red models for the remote estimation of chlorophyll-α concentration in optically complex turbid productive waters: from in situ measurements to aerial imagery. Dissertations and Theses in Natural Resources, Paper 46. http://digitalcommons.unl.edu/natresdiss/46

  • Gurlin D, Gitelson AA, Moses JW (2011) Remote estimation of chl-a concentration in turbid productive waters—return to a simple two-band NIR-red model? Remote Sens Environ 115:3479–3490

    Article  Google Scholar 

  • Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. University Press Cambridge, UK, p 401

    Book  Google Scholar 

  • Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, pp 1137–1143. http://robotics.stanford.edu/~ronnyk

  • Kutser T, Pierson DC, Kallio KY, Reinart A, Sobek S (2005) Mapping Lake CDOM by satellite remote sensing. Remote Sens Environ 94(4):535–540

    Article  Google Scholar 

  • Makarewicz JC (1993) Phytoplankton biomass and species composition in Lake Erie, 1970 to 1987. J Great Lakes Res 19(2):258–274

    Article  Google Scholar 

  • Martin S (2004) An introduction to ocean remote sensing. Cambridge University Press, Cambridge, p 46

    Google Scholar 

  • Matthews MW, Bernard S, Winter K (2010) Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens Environ 114(9):2070–2087

    Article  Google Scholar 

  • McClain CRA (2009) Decade of satellite ocean color observations. Annu Rev Marine Sci 1:19–42

    Article  Google Scholar 

  • Mobley CD (1994) Light and water: radiative transfer in natural waters. Academic press, San Diego

    Google Scholar 

  • Morel A, Prieur L (1977) Analysis of variations in ocean color. Limnol Oceanogr 22(4):709–722

    Article  Google Scholar 

  • Moses WJ, Gitelson AA, Berdnikov S, Povazhnyy V (2009) Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—successes and challenges. Environ Res Lett 4:045005

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (2011) Experimental Lake Erie harmful algal bloom bulletin. 6

  • Novoa S, Chust G, Froidefond JM, Petus C, Franco J, Orive E, Seoane S, Borja A (2012) Water quality onitoring in Basque coastal areas using local chlorophyll-a algorithm and MERIS images. J Appl Remote Sens 6(1):063519

    Article  Google Scholar 

  • O’Reilly JE, Maritorena S, Mitchell BG, Siegel DA, Carder KL, Garver SA (1998) Ocean color chlorophyll algorithms for SeaWiFS. J Geophys Res 103(C11):24937–24953

    Article  Google Scholar 

  • Ouellette AJA, Handy SM, Wilhelm SW (2006) Toxic microcystis is widespread in Lake Erie: pCR detection of toxin genes and molecular characterization of associated cyanobacterial communities. Microb Ecol 51(2):154–165

    Article  Google Scholar 

  • Schalles JF (2006) Optical remote sensing techniques to estimate phytoplankton chlorophyll a concentrations in coastal waters with varying suspended matter and CDOM concentrations. In: Richardson LL, LeDrew EF (eds) Remote sensing of aquatic coastal ecosystem processes. Springer Netherlands, pp 27-79

  • Schalles JF, Rundquist DC, Schiebe FR (2002) The influence of suspended clays on phytoplankton reflectance signatures and the remote estimation of chlorophyll. Verh Int Ver Theor Angew Limnol/Proc Int Assoc Theor Appl Limnol/Trav Assoc Int Limnol Theor Appl 27(6):3619–3625

    Google Scholar 

  • Simis SGH, Peters SWM, Gons HJ (2005) Remote sensing of the cyanobacterial pigment phycocyanin in turbid inland water. Limnol Oceanogr 50(1):237–245

    Article  Google Scholar 

  • Sokoletsky LG, Ross SL, Wetz MS, Paerl HW (2011) MERIS retrieval of water quality components in the turbid Albemarle-Pamlico Sound Estuary, USA. Remote Sens 3:684–707. doi:10.3390/rs3040684

    Article  Google Scholar 

  • Wang MH, Shi W (2005) Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the US: two case studies. Geophys Res Lett 32:L13606

    Article  Google Scholar 

  • Wang F, Zhou B, Xu JM (2009) Application of neural network and MODIS 250 m imagery for estimating suspended sediments concentration in Hangzhou Bay, China. Environ Geol 56:1093–1101

    Article  Google Scholar 

  • Whitlock CH, Poole LR, Usry JW, Houghton WM, Witte WG, Morris WD, Gurganus EA (1981) Comparison of reflectance with backscatter and absorption parameters for turbid waters. Appl Opt 20:517–522

    Article  Google Scholar 

  • Witter DL, Ortiz JD, Palm S, Heath RT, Budd JW (2009) Assessing the application of SeaWiFS Ocean color algorithms to Lake Erie. J Great Lakes Res 35(3):361–370

    Article  Google Scholar 

  • Wong MS, Nichol JE, Lee KH, Emerson N (2008) Modeling water quality using Terra/MODIS 500 m satellite images. In: Proceedings of XXIst ISPRS Congress, Vol XXXVII, pp 679–684

  • Woodruff DL, Stumpf RP, Scope JA, Paerl HW (1999) Remote estimation of water clarity in optically complex estuarine waters. Remote Sens Environ 68:41–52

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the NOAA-Ohio Sea Grant Program Grant R/ER-100-PD. Authors are thankful to Matt Thomas, Captain of the Stone Laboratory research vessels, and the Stone Laboratories, for access and research vessels required to collect the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Ali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, K., Witter, D. & Ortiz, J. Application of empirical and semi-analytical algorithms to MERIS data for estimating chlorophyll a in Case 2 waters of Lake Erie. Environ Earth Sci 71, 4209–4220 (2014). https://doi.org/10.1007/s12665-013-2814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2814-0

Keywords

Navigation