Skip to main content
Log in

Investigation of geomechanical responses of reservoirs induced by carbon dioxide storage

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Assessment of the suitability of potential sub-surface storage sites for CO2 storage cuts across several issues, a dominant part being the sustainability in terms of the retention capacity of prospective reservoirs. Questions often raised but not properly investigated border on the stability of underground reservoirs during the injection process and the protracted effect after injection is fully completed. A review of studies on CO2 sequestration reveals several uncovered areas with one significant aspect being the geo-mechanical effect of CO2 injection and storage within the underground formation. A computational framework has been built as part of a series of ongoing investigations to ascertain the susceptibility of underground formations during and after CO2 is introduced. This is made possible by adopting a discrete element modelling methodology as a first step in the sequence of a designed procedure. By applying this technique, the formation materials are idealised as an assembly of discrete particles interacting in a manner which allows for specific descriptions of the morphology and fracturing events. Computational tests conducted on several types of models representative of reservoir formations reveal reservoir geo-mechanical responses highly dependent on factors, such as material property of rocks, pressure build-up and injection pressure. An example of this is observed in the mode of fracturing events which is significantly influenced by the rate of fluid injection. The outcome of this study forms a strong basis towards a better understanding of the behaviour of reservoir formations subjected to CO2 injection and storage. In addition, information from these studies could serve as a reference for enhanced oil recovery processes and enhanced coal bed methane productions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

a :

Aperture (m)

a o :

Residual aperture (m)

A :

Cross-sectional area of model sample (m2)

DEM:

Discrete element method

D p :

Depth of perforation channel (m)

D w :

Well diameter (m)

E :

Elastic modulus (Pa)

F :

Compressive force (N)

F o :

Compressive force at which the residual aperture reduces to half (N)

g :

Gap between surfaces of contacting pair of particles (m)

H :

Height of model sample (m)

k :

Intrinsic permeability (m2)

K f :

Bulk modulus of fluid (Pa)

L :

Length of model sample (m)

L p :

Channel (pipe) length (m)

m :

Multiplier factor

ΔP :

Pressure gradient (Pa)

ρ f :

Fluid density (kg/m3)

Q :

Sum of flow rates (m3/s)

Q i :

Flow rate at inlet of sample (m3/s)

Q o :

Flow rate at outlet of sample (m3/s)

Q p :

Flow rate for each pipe between domains (discharge rate) (m3/s)

Q s :

Steady state flow rate (m3/s)

R lo :

Minimum particle radius (m)

R ratio :

Particle size ratio

r 1, r 2 :

Radius of a given pair of particles in contact (m)

S :

Saturation

Δt :

Timestep (s)

V :

Volume of model sample (m3)

V d :

Apparent volume of the domain (m3)

V p :

Volume of flow pipe (m3)

ν :

Poisson’s ratio

w :

Channel width (m)

μ :

Fluid viscosity (Pa s or N s /m2)

φ :

Porosity

σ c :

Compressive strength (Pa)

σ 1 :

Vertical confining stress (Pa)

σ 3 :

Lateral confining stress (Pa)

References

  • Al-Busaidi A, Hazzard JF, Young RP (2005) Distinct element modeling of hydraulically fractured Lac du Bonnet granite. J Geophys Res 110:B06302. doi:10.1029/2004JB003297

    Google Scholar 

  • Ambrose WA, Lakshminarasimhan S, Holtz MH, Nunez-Lopez V, Hovorka SD, Duncan I (2008) Geologic factors controlling CO2 storage capacity and permanence: case studies based on experience with heterogeneity in oil and gas reservoirs applied to CO2 storage. Environ Geol 54:1619–1633

    Article  Google Scholar 

  • Andre L, Audigane P, Azaroual M, Menjoz A (2007) Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Convers Manag 48:1782–1797

    Article  Google Scholar 

  • Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu TF (2007) Two-dimensional reactive transport modeling of CO2 injection in a saline Aquifer at the Sleipner site, North Sea. Am J Sci 307:974–1008

    Article  Google Scholar 

  • Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34:254–273

    Article  Google Scholar 

  • Bachu S, Bonijoly D, Bradshaw J, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: methodology and gaps. Int J Greenh Gas Control 1:430–443

    Article  Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, New York

    Google Scholar 

  • Bell FG, Culshaw MG (1998) Petrographic and engineering properties of sandstones from the Sneinton Formation, Nottinghamshire, England. Q J Eng Geol Hydrogeol 31:5–19

    Article  Google Scholar 

  • Beyer C, Li DD, De Lucia M, Kuhn M, Bauer S (2012) Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ Earth Sci 67(2):573–588

    Article  Google Scholar 

  • Birkholzer J, Tsang CF (2008) Introduction to the special issue on site characterization for geological storage of CO2. Environ Geol 54:1579–1581

    Article  Google Scholar 

  • Birkholzer J, Zhang G-Q, Zhang K, Jordan P, Rutqvist J, Tsang CF (2008) CO2 geological storage and groundwater resources: large-scale hydrological evaluation and modelling of the impact on groundwater systems. Lawrence Bereley National Laboratory Report

  • Birkholzer JT, Zhou QL, Tsang CF (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenh Gas Control 3:181–194

    Article  Google Scholar 

  • Blunt M, Fayers FJ, Orr FM (1993) Carbon dioxide in enhanced oil recovery. Energy Convers Manag 34:1197–1204

    Article  Google Scholar 

  • Bossie-Codreanu D, Le-Gallo Y, Duquerroix JP, Doerler N, Le Thiez P (2003) CO2 sequestration in depleted oil reservoirs. In: Proceedings of greenhouse gas control technologies,vols I and II, pp 403–408

  • Boutt DF, Cook BK, McPherson BJOL, Williams JR (2007) Direct simulation of fluid-solid mechanics in porous media using the discrete element and lattice-Boltzmann methods. J Geophys Res 112:B10209. doi:10.1029/2004JB003213

    Article  Google Scholar 

  • Bradshaw J, Bachu S, Bonijoly D, Burruss R, Holloway S, Christensen NP, Mathiassen OM (2007) CO2 storage capacity estimation: issues and development of standards. Int J Greenh Gas Control 1:62–68

    Article  Google Scholar 

  • Celia MA, Nordbotten JM (2009) Practical modeling approaches for geological storage of carbon dioxide. Ground Water 47:627–638

    Article  Google Scholar 

  • Celia MA, Bachu S, Nordbotten JM, Gasda SE, Dahle HK (2005) Quantitative estimation of CO2 leakage from geological storage: analytical models, numerical models, and data needs. In: Proceedings of 7th international conference on greenhouse gas control technologies (GHGT-7), September 5–9, 2004. Vancouver, Canada, vol 1, pp 663–672

  • Cho N, Martin CN, Sego DC (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44:997–1010

    Article  Google Scholar 

  • Class H, Ebigbo A, Helmig R, Dahle HK, Nordbotten JM, Celia MA, Audigane P, Melanie D, Ennis-King J, Fan Y, Flemisch B, Gasda SE, Jin M, Krug S, Labregere D, Beni AN, Pawar RJ, Sbai A, Thomas SG, Trenty L, Wei L (2009) A benchmark study on problems related to CO2 storage in geologic formations. Comput Geosci 13:409–434

    Article  Google Scholar 

  • De Lucia M, Bauer S, Beyer C, Kuhn M, Nowak T, Pudlo D, Reitenbach V, Stadler S (2012) Modelling CO2-induced fluid-rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model. Environ Earth Sci 67(2):563–572

    Article  Google Scholar 

  • Dethlefsen F, Haase C, Ebert M, Dahmke A (2012) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65(4):1105–1117

    Article  Google Scholar 

  • Doughty C (2007) Modeling geologic storage of carbon dioxide: comparison of non-hysteretic and hysteretic characteristic curves. Energy Convers Manag 48:1768–1781

    Article  Google Scholar 

  • Doughty C, Pruess K (2004) Modeling supercritical carbon dioxide injection in heterogeneous porous media. Vadose Zone J 3:837–847

    Article  Google Scholar 

  • Dullien FAL (1992) Porous media—fluid transport and pore structure. Academic Press, Inc., San Diego

    Google Scholar 

  • Eigestad GT, Dahle HK, Hellevang B, Riis F, Johansen WT, Oian E (2009) Geological modeling and simulation of CO2 injection in the Johansen formation. Comput Geosci 13:435–450

    Article  Google Scholar 

  • Ennis-King J, Paterson L (2003a) Rate of dissolution due to convective mixing in the underground storage of carbon dioxide. In: Gale J, Kaya Y (eds) Greenhouse gas control technologies, vol 1, pp 507–510

  • Ennis-King J, Paterson L (2005) Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. SPE J 10:349–356

    Article  Google Scholar 

  • Ennis-King J, Gibson-Poole CM, Lang SC, Paterson L (2003) Long term numerical simulation of geological storage of CO2 in the Petrel sub-basin, North West Australia. In: Gale J, Kaya Y (eds) Proceedings of 6th international conference on greenhouse gas control technologies (GHGT-6), 1–4 October 2002, Kyoto, Japan. Pergamon Press, Kidlington, vol 1, pp 507–511

  • Eshiet KI, Sheng Y (2011) Carbon dioxide injection and associated hydraulic fracturing of reservoir formations. In: International conference on carbon reduction technologies, September 19–22, Jurassic highland, Poland

  • Eshiet K, Sheng Y, Ye J (2012) Microscopic modelling of the hydraulic fracturing process. Environ Earth Sci 68(4):1–18

    Google Scholar 

  • Fahrner S, Schafer D, Dethlefsen F, Dahmke A (2012) Reactive modelling of CO2 intrusion into freshwater aquifers: current requirements, approaches and limitations to account for temperature and pressure effects. Environ Earth Sci 67(8):2269–2283

    Article  Google Scholar 

  • Gale JJ (2004) Using coal seams for CO2 sequestration. Geologica Belgica 7:99–103

    Google Scholar 

  • Ghaderia SM, Keitha DW, Leonenkob Y (2009) Feasibility of injecting large volumes of CO2 into aquifers. Energy Procedia 1:3113–3120

    Article  Google Scholar 

  • Gibson-Poole CM, Root RS, Lang SC, Streit JE, Henning AL, Otto CJ, Underschultz JR (2005) Conducting comprehensive analysis of potential sites for geological CO2 storage. In : Rubin ES, Keith DW, Gilboy CF (eds) Greenhouse gas technologies: proceedings of the 7th international conference on greenhouse gas control technologies, Vancouver, 5–9 September

  • Horsrud P, Sonstebo EF, Boe R (1998) Mechanical and petrophysical properties of North Sea shales. Int J Rock Mech Min Sci. 35(8):1009–1020

    Article  Google Scholar 

  • Hou ZM, Gou Y, Taron J, Gorke UJ, Kolditz O (2012) Thermo-hydro-mechanical modeling of carbon dioxide injection for enhanced gas-recovery (CO2-EGR): a benchmarking study for code comparison. Environ Earth Sci 67(2):549–561

    Article  Google Scholar 

  • Huq F, Blum P, Marks MAW, Nowak M, Haderlein SB, Grathwohl P (2012) Chemical changes in fluid composition due to CO2 injection in the Altmark gas field: preliminary results from batch experiments. Environ Earth Sci 67(2):385–394

    Article  Google Scholar 

  • IPCC (2005) Intergovernmental Panel on Climate Change (IPCC) special report on carbon dioxide capture and storage, chap 5. Underground geological storage. IPCC Report, 2005

  • Itasca Consulting Group (2008) PFC2D (Particle Flow Code, 2 dimension), version 4.0 user manual. Mineapolis, Minesota

  • Khatiwada M (2009) Numerical modeling of time-lapse seismic experiments to monitor CO2 sequestration in a layered basalt reservoir. Boise State University

  • Kolditz O, Bauer S, Bilke L, Bottcher N, Delfs JO, Fischer T, Gorke UJ, Kalbacher T, Kosakowski G, McDermott CI, Park CH, Radu F, Rink K, Shao H, Shao HB, Sun F, Sun YY, Singh AK, Taron J, Walther M, Wang W, Watanabe N, Wu Y, Xie M, Xu W, Zehner B (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci 67(2):589–599

    Article  Google Scholar 

  • Kuhn M, Gorke UJ, Birkholzer JT, Kolditz O (2012a) The CLEAN project in the context of CO2 storage and enhanced gas recovery. Environ Earth Sci 67(2):307–310

    Article  Google Scholar 

  • Kuhn M, Tesmer M, Pliz P, Meyer R, Reinicke K, Forster A, Koldittz O, Schaefer D (2012b) CLEAN: project overview on CO2 large-scale enhanced gas recovery in the Altmark natural gad field (Germany). Environ Earth Sci 67(2):311–321

    Article  Google Scholar 

  • Lempp C, Shams KM, Jahr N (2012) Approaches to stress monitoring in deep boreholes for future CCS projects. Environ Earth Sci 67(2):435–445

    Article  Google Scholar 

  • Li LC, Tang CA, Li G, Wang SY, Liang ZZ, Zhang YB (2012) Numerical simulation of 3D hydraulic fracturing based on an improved flow-stress-damage model and a parallel FEM technique. Rock Mech Rock Eng, Published online: 24 July 2012

  • Lu JM, Partin JW, Hovorka SD, Wong C (2010) Potential risks to freshwater resources as a result of leakage from CO2 geological storage: a batch-reaction experiment. Environ Earth Sci 60(2):335–348

    Article  Google Scholar 

  • Ma S, Morrow NR (1996) Relationships between porosity and permeability for porous rocks. In: International symposium of the Society of Core Analysts, September 8–10, Montpelier, France

  • Mader D (1989) Hydraulic proppant fracturing and gravel packing. In: Developments in petroleum sciences, vol 26. Elsevier, Amsterdam

  • Mathias SA, Hardisty PE, Trudell MR, Zimmerman RW (2009) Screening and selection of sites for CO2 sequestration based on pressure buildup. Int J Greenh Gas Control 3:577–585

    Article  Google Scholar 

  • Nicot JP (2008) Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Int J Greenh Gas Control 2(4):582–593

    Article  Google Scholar 

  • Nicot J-P, Hovorka SD, Choi J-W (2009) Investigation of water displacement following large CO2 sequestration operations. Energy Procedia 1:4411–4418

    Article  Google Scholar 

  • Novak K, Malvic T, Simon K (2012) Increased hydrocarbon recovery and CO2 management, a Croatian example. Environ Earth Sci 68(4):1187–1197

    Article  Google Scholar 

  • Park YC, Huh DG, Park CH (2012) A pressure-monitoring method to warn CO2 leakage in geological storage sites. Environ Earth Sci 67(2):425–433

    Article  Google Scholar 

  • Peter A, Lamert H, Beyer M, Hornbruch G, Heinrich B, Schulz A, Geistlinger H, Schreiber B, Dietrich P, Werban U, Vogt C, Richnow HH, Grossmann J, Dahmke A (2012) Investigation of the geochemical impact of CO2 on shallow groundwater: design and implementation of a CO2 injection test in Northeast Germany. Environ Earth Sci 67(2):335–349

    Article  Google Scholar 

  • Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364

    Article  Google Scholar 

  • Rutqvist J, Tsang CF (2002) A study of caprock hydromechanical changes associated with CO2 injection into a brine aquifer. Environ Geol 42:296–305

    Article  Google Scholar 

  • Rutqvist J, Tsang CF (2005) Coupled hydromechanical effects of CO2 injection. In: Tsang CF, Apps JA (eds) Underground injection science and technology. Elsevier, pp 649–679

  • Rutqvist J, Birkholzer J, Cappa F, Tsang CF (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manag 48:1798–1807

    Article  Google Scholar 

  • Rutqvist J, Birkholzer J, Tsang CF (2008) Coupled reservoir-geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir-caprock systems. Int J Rock Mech Min Sci 45:132–143

    Article  Google Scholar 

  • Schafer F, Walter L, Class H, Muller C (2012) The regional pressure impact of CO2 storage: a showcase study from the North German Basin. Environ Earth Sci 65(7):2037–2049

    Article  Google Scholar 

  • Shimizu H, Murata S, Ishida T (2009) The Distinct element analysis for hydraulic fracturing considering the fluid viscosity. In: 43rd US rock mechanics symposium and 4th US–Canada rock mechanics symposium, June 28th–July 1, 2009, Asheville, NC

  • Shimizu H, Murata S, Ishida T (2011) The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int J Rock Mech Min Sci Geomech 48:712–727

    Article  Google Scholar 

  • Sperl J, Trckova J (2008) Permeability and porosity of rocks and their relationship based on laboratory testing. Acta Geodyn Geomater 5(1):41–47

    Google Scholar 

  • Streit EE, Hillis RR (2004) Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy 29:1445–1456

    Article  Google Scholar 

  • Streit JE, Siggins AF, Rubin ES, Keith DW, Gilboy CF, Wilson M, Morris T, Gale J, Thambimuthu K (2005) Predicting, monitoring and controlling geomechanical effects of CO2 injection. Greenhouse Gas Control Technologies, vol 7. Elsevier Science Ltd, Oxford

  • Tsang CF, Benson SM, Kobelski B, Smith R (2002) Scientific considerations related to regulation development for CO2 sequestration in brine formations. Environ Geol 42

  • Tsang CF, Rutqvist J, Min KB (2007) Fractured rock hydromechanics: from borehole testing to solute transport and CO2 storage. Rock Phys Geomech Study Reserv Repos 284:15–34

    Google Scholar 

  • Tsang CF, Birkholzer J, Rutqvist J (2008) A comparative review of hydrologic issues involved in geologic storage of CO2 and injection disposal of liquid waste. Environ Geol 54:1723–1737

    Article  Google Scholar 

  • US.EPA (2004) Evaluation of impacts to underground sources of drinking water by hydraulic fracturing of coalbed methane reservoirs. United States Environmental Protection Agency, Office of Water, Office of Ground Water and Drinking Water, Washington, DC

  • Vilarrasa V, Bolster D, Olivella S, Carrera J (2010) Coupled hydromechanical modeling of CO2 sequestration in deep saline aquifers. Int J Greenh Gas Control 4:910–919

    Article  Google Scholar 

  • Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16:1016–1024

    Article  Google Scholar 

  • Wojnarowski P, Rewis A (2003) Impact of injection pressure during cold water reinjection on the state of stress in geothermal reservoirs. In: International geothermal conference, Reykjavík

  • Xu TF, Sonnenthal E, Spycher N, Pruess K (2006a) TOUGHREACT—a simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: applications to geothermal injectivity and CO2 geological sequestration. Comput Geosci 32:145–165

    Article  Google Scholar 

  • Xu X, Chen S, Zhang D (2006b) Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Adv Water Resour 29:397–407

    Article  Google Scholar 

  • Xu Z, Fang Y, Scheibe TD, Bonneville A (2012) A fluid pressure and deformation analysis for geological sequestration of carbondioxide. Comput Geosci 46:31–37

    Article  Google Scholar 

  • Yamamoto H, Zhang K, Karasaki K, Marui A, Uehara H (2009) Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. Int J Greenh Gas Control 3:586–599

    Article  Google Scholar 

  • Yang B, Jiao Y, Lei S (2006) A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Int J Comput Aided Eng Softw 23:607–631

    Article  Google Scholar 

  • Zhou QL, Birkholzer JT, Tsang CF, Rutqvist J (2008) A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int J Greenh Gas Control 2:626–639

    Article  Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23:1–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshiet, K., Sheng, Y. Investigation of geomechanical responses of reservoirs induced by carbon dioxide storage. Environ Earth Sci 71, 3999–4020 (2014). https://doi.org/10.1007/s12665-013-2784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2784-2

Keywords

Navigation