Skip to main content
Log in

Redox-dependent removal of 27 organic trace pollutants: compilation of results from tank aeration experiments

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The biodegradation of various wastewater-derived organic trace pollutants occurring in different aquatic compartments of the environment was previously reported to be influenced by the prevailing redox conditions. However, comparative studies on the redox-dependent degradation behavior of organic trace pollutants are scarce. The objective of the study presented herein, was to compile and evaluate data from several comparable previous tank experiments, thus, providing an overview on the redox-dependent removal of a total of 27 wastewater-derived trace compounds, including phenazone type compounds, antimicrobials, ß-blockers, psychoactive drugs and sulfonamides. Removal rate constants were fitted assuming first-order degradation kinetics. Six compounds were identified to be removed solely under oxic, three compounds solely under anoxic conditions. Others persisted under all experimental conditions, while some were removed under both oxic and anoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barbieri M, Carrera J, Sanchez-Vila X, Ayora C, Cama J, Köck-Schulmeyer M, López de Alda M, Barceló D, Tobella Brunet J, Hernández García M (2011) Microcosm experiments to control anaerobic redox conditions when studying the fate of organic micropollutants in aquifer material. J Contam Hydrol 126(3–4):330–345. doi:10.1016/j.jconhyd.2011.09.003

    Article  Google Scholar 

  • Baty F, Delignette-Muller ML (2004) Estimating the bacterial lag time: which model, which precision? Int J Food Microbiol 91(3):261–277. doi:10.1016/j.ijfoodmicro.2003.07.002

    Article  Google Scholar 

  • Baumgarten B, Jahrig J, Reemtsma T, Jekel M (2011) Long term laboratory column experiments to simulate bank filtration: factors controlling removal of sulfamethoxazole. Water Res 45(1):211–220. doi:10.1016/j.watres.2010.08.034

    Article  Google Scholar 

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51(2):359–365

    Google Scholar 

  • Burke V, Duennbier U, Massmann G (2013) The effect of aeration on the removal of wastewater-derived pharmaceutical residues from groundwater—a laboratory study. Water Sci Technol 67(3):658–666. doi:10.2166/wst.2012.613

    Article  Google Scholar 

  • Carballa M, Omil F, Alder AC, Lema JM (2006) Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products. Water Sci Technol 53(8):109–117. doi:10.2166/wst.2006.241

    Article  Google Scholar 

  • Carr D, Morse A, Zak J, Anderson T (2011) Microbially mediated degradation of common pharmaceuticals and personal care products in soil under aerobic and reduced oxygen conditions. Water Air Soil Pollut 216(1):633–642. doi:10.1007/s11270-010-0558-y

    Article  Google Scholar 

  • Conkle JL, Gan J, Anderson MA (2012) Degradation and sorption of commonly detected PPCPs in wetland sediments under aerobic and anaerobic conditions. J Soils Sediment 12(7):1164–1173. doi:10.1007/s11368-012-0535-8

    Article  Google Scholar 

  • Doherty J (2005) PEST—model-independent paramter estimation, user manual: 5th Edn

  • Drewes JE, Heberer T, Rauch T, Reddersen K (2003) Fate of pharmaceuticals during ground water recharge. Ground Water Monit R 23(3):64–72

    Article  Google Scholar 

  • Goebel A, McArdell CS, Joss A, Siegrist H, Giger W (2007) Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Sci Total Environ 372(2–3):361–371. doi:10.1016/j.scitotenv.2006.07.039

    Article  Google Scholar 

  • Gros M, Petrovic M, Ginebreda A, Barcelo D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36(1):15–26. doi:10.1016/j.envint.2009.09.002

    Article  Google Scholar 

  • Heberer T, Mechlinski A, Fanck B, Knappe A, Massmann G, Pekdeger A, Fritz B (2004) Field studies on the fate and transport of pharmaceutical residues in bank filtration. Ground Water Monit R 24(2):70–77

    Article  Google Scholar 

  • Heberer T, Massmann G, Fanck B, Taute T, Dunnbier U (2008) Behaviour and redox sensitivity of antimicrobial residues during bank filtration. Chemosphere 73(4):451–460. doi:10.1016/j.chemosphere.2008.06.056

    Article  Google Scholar 

  • Hijosa-Valsero M, Matamoros V, Sidrach-Cardona R, Martin-Villacorta J, Becares E, Bayona JM (2010) Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters. Water Res 44(12):3669–3678. doi:10.1016/j.watres.2010.04.022

    Article  Google Scholar 

  • Joss A, Andersen H, Ternes T, Richle PR, Siegrist H (2004) Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization. Environ Sci Technol 38(11):3047–3055. doi:10.1021/es0351488

    Article  Google Scholar 

  • Karnjanapiboonwong A, Suski JG, Shah AA, Cai Q, Morse AN, Anderson TA (2011) Occurrence of PPCPs at a wastewater treatment plant and in soil and groundwater at a land application site. Water Air Soil Poll 216(1–4):257–273. doi:10.1007/s11270-010-0532-8

    Article  Google Scholar 

  • Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303. doi:10.1016/j.envpol.2011.12.034

    Article  Google Scholar 

  • Liu YS, Ying GG, Shareef A, Kookana RS (2011) Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. Water Res 45(16):5005–5014. doi:10.1016/j.watres.2011.07.001

    Article  Google Scholar 

  • Massmann G, Greskowiak J, Duennbier U, Zuehlke S, Knappe A, Pekdeger A (2006) The impact of variable temperatures on the redox conditions and the behaviour of pharmaceutical residues during artificial recharge. J Hydrol 328(1–2):141–156. doi:10.1016/j.jhydrol.2005.12.009

    Article  Google Scholar 

  • Massmann G, Duennbier U, Heberer T, Taute T (2008a) Behaviour and redox sensitivity of pharmaceutical residues during bank filtration - Investigation of residues of phenazone-type analgesics. Chemosphere 71(8):1476–1485. doi:10.1016/j.chemosphere.2007.12.017

    Article  Google Scholar 

  • Massmann G, Sueltenfuss J, Duennbier U, Knappe A, Taute T, Pekdeger A (2008b) Investigation of groundwater a residence times during bank filtration in Berlin: multi-tracer approach. Hydrol Process 22(6):788–801. doi:10.1002/Hyp.6649

    Article  Google Scholar 

  • Meffe R, Massmann G, Kohfahl C, Taute T, Richter D, Duennbier U, Pekdeger A (2012) Investigating the redox sensitivity of para-toluenesulfonamide (p-TSA) in groundwater. Environ Earth Sci 65(3):861–870. doi:10.1007/s12665-011-1130-9

    Article  Google Scholar 

  • Peschka M, Eubeler JP, Knepper TP (2006) Occurrence and fate of barbiturates in the aquatic environment. Environ Sci Technol 40(23):7200–7206. doi:10.1021/es052567r

    Article  Google Scholar 

  • Reyes-Contreras C, Matamoros V, Ruiz I, Soto M, Bayona JM (2011) Evaluation of PPCPs removal in a combined anaerobic digester-constructed wetland pilot plant treating urban wastewater. Chemosphere 84(9):1200–1207. doi:10.1016/j.chemosphere.2011.06.003

    Article  Google Scholar 

  • Richter D, Massmann G, Taute T, Duennbier U (2009) Investigation of the fate of sulfonamides downgradient of a decommissioned sewage farm near Berlin Germany. J Contam Hydrol 106(3–4):183–194. doi:10.1016/j.jconhyd.2009.03.001

    Article  Google Scholar 

  • Schmidt CK, Lange FT, Brauch HJ (2004) Assessing the impact of different redox conditions and residence times on the fate of organic micropollutants during riverbank filtration. Paper presented at the fourth international conference on pharmaceuticals and endocrine disrupting chemicals in Water, October 13–15, Minneapolis, Minnesota NGWA

  • Suarez S, Lema JM, Omil F (2010) Removal of pharmaceutical and personal care products (PPCPs) under nitrifying and denitrifying conditions. Water Res 44(10):3214–3224. doi:10.1016/j.watres.2010.02.040

    Article  Google Scholar 

  • Vieno N, Tuhkanen T, Kronberg L (2007) Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res 41(5):1001–1012. doi:10.1016/j.watres.2006.12.017

    Article  Google Scholar 

  • Wode F, Reilich C, van Baar P, Dünnbier U, Jekel M, Reemtsma T (2012) Multiresidue analytical method for the simultaneous determination of 72 micropollutants in aqueous samples with ultra high performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A (0). doi:10.1016/j.chroma.2012.10.054

  • Wolf L, Zwiener C, Zemann M (2012) Tracking artificial sweeteners and pharmaceuticals introduced into urban groundwater by leaking sewer networks. Sci Total Environ 430:8–19

    Article  Google Scholar 

  • Wu CX, Spongberg AL, Witter JD (2008) Determination of the persistence of pharmaceuticals in biosolids using liquid-chromatography tandem mass spectrometry. Chemosphere 73(4):511–518. doi:10.1016/j.chemosphere.2008.06.026

    Article  Google Scholar 

  • Hass U, Duennbier U, Massmann G (submitted) Redox-sensitivity and sorption behavior of psychoactive compounds in groundwater. submitted to Water, Air Soil Pollution

  • Zuehlke S, Duennbier U, Heberer T (2007) Investigation of the behavior and metabolism of pharmaceutical residues during purification of contaminated ground water used for drinking water supply. Chemosphere 69(11):1673–1680. doi:10.1016/j.chemosphere.2007.06.020

    Article  Google Scholar 

  • Zwietering MH, Jongenburger I, Rombouts FM, Vantriet K (1990) Modeling of the bacterial-growth curve. Appl Environ Microb 56(6):1875–1881

    Google Scholar 

Download references

Acknowledgments

The study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the project MA 3274/5-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Burke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, V., Richter, D., Hass, U. et al. Redox-dependent removal of 27 organic trace pollutants: compilation of results from tank aeration experiments. Environ Earth Sci 71, 3685–3695 (2014). https://doi.org/10.1007/s12665-013-2762-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2762-8

Keywords

Navigation