Skip to main content
Log in

Using non-conservative tracers to characterise karstification processes in the Merinos-Colorado-Carrasco carbonate aquifer system (southern Spain)

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The systematic sampling of the chemical composition of the groundwater from five karst springs (including an overflow spring) and one outflowing borehole have permitted to determine distinctive chemical changes in the waters that reflect the geochemical processes occurring in a carbonate aquifer system from southern Spain. The analysis of the dissolution parameters revealed that geochemical evolution of the karst waters basically depends on the availability of the minerals forming aquifer rocks and the residence time within the aquifers. In the three proposed scenarios in the aquifers, which include the preferential flow routines, the more important geochemical processes taking place during the groundwater flow from the recharge to the discharge zones are: CO2 dissolution and exsolution (outgassing), calcite net dissolution, calcite and dolomite sequential dissolution, gypsum/anhydrite and halite dissolution, de-dolomitization and calcite precipitation. A detailed analysis of the hydrochemical data set, saturation indices of the minerals and partial pressure of CO2 in the waters joined to the application of geochemical modelling methods allowed the elaboration of a hydrogeochemical model of the studied aquifers. The developed approach contributes to a better understanding of the karstification processes and the hydrogeological functioning of carbonate aquifers, the latter being a crucial aspect for the suitable management of the water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida C, Carvalho MR, Almeida S (1992) Modelaçao de processos hidrogeoquímicos ocurrentes nos acuíferos carbonatados de regiáo de Lisboa-Cascais-Sintra. En: Hidrogeología de Recursos Hidráulicos, v.xvii, Asociación española de Hidrología Subterránea, Madrid, pp 289–303 (in Portuguese)

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43:951–968

    Article  Google Scholar 

  • Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–110

    Article  Google Scholar 

  • Bakalowicz M (1979) Contribution de la géochimie des eaux à la connaissance de l’aquifère karstique et de la karstification. Thèse Doct. Sci. Nat., Univ. P. et M. Curie, París-VI, Géol. Dyn

  • Bakalowicz M, Blavoux B, Mangin A (1974) Apports du traçage isotopique naturel a la connaissance du fonctionnement d′un systeme karstique—teneurs en oxigene-18 de trois systeme des pyrenees, France. J Hydrol 23:141–158

    Article  Google Scholar 

  • Barberá JA, Andreo B (2011) Functioning of a karst aquifer from S Spain under highly variable climate conditions, deduced from hydrochemical records. Environ Earth Sci 65:2337–2349

    Article  Google Scholar 

  • Barberá JA, Andreo B, Almeida C (2011b) Hydrogeological processes along main flow paths in Los Merinos-Teba aquifers by means hydrochemical data and geochemical modelling. In: Proceedings of the 9th conference of the limestone hydrology. Besançon, France, pp 49–52

  • Busenberg E, Plummer LN (1982) The kinetics of dissolution of dolomite in CO2–H2O system at 15–65  °C and 0–1 atm PCO2. Am J Sci 282:45–78

    Article  Google Scholar 

  • Capaccioni B, Didero M, Paletta C, Salvadori P (2001) Hydrogeochemistry of groundwaters from carbonate formations with basal gypsiferous layers: an example from the Mt Catria Mt Nerone ridge (Northern Apennines, Italy). J Hydrol 253:14–26

    Article  Google Scholar 

  • Cardenal J, Benavente J, Cruz-sanjulián J (1994) Chemical evolution of groundwater in triassic gypsum-bearing carbonate aquifers (Las Alpujarras, Southern Spain). J Hydrol 161:3–30

    Article  Google Scholar 

  • Cruz-Sanjulián J (1974) Estudio geológico del sector Cañete la Real-Teba-Osuna (Cordillera Bética, región occidental). Tesis Doctoral Univ, de Granada, p 431

    Google Scholar 

  • Cruz-Sanjulián JJ (1981) Evolución geomorfológica e hidrogeológica reciente en el sector Teba-Cañete la Real (Málaga) a la luz de la datación de formaciones travertínicas. Boletín Geológico y Minero 92:297–308

    Google Scholar 

  • Deike RG (1990) Dolomite dissolution rates and possible Holocene dedolomitization of water-bearing units in the Edwards aquifer, south-central Texas. J Hydrol 112:335–373

    Article  Google Scholar 

  • Edmunds WM, Cook JM, Darling WG, Kinniburgh DG, Miles DL (1987) Baseline geochemical conditions in the chalk aquifer, Berkshire, UK: a basis for groundwater quality management. Appl Geochem 2:251–274

    Article  Google Scholar 

  • Ford DC, Williams PW (2007) Karst Hydrogeology and Geomorphology. Wiley, Chichester, p 562

    Book  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, New Jersey, p 604

    Google Scholar 

  • Hanshaw B, Back W (1979) Major geochemical processes in the evolution of carbonate-aquifer systems. J Hydrol 43:287–312

    Article  Google Scholar 

  • Hunkeler D, Mudry J (2007) Hydrochemical methods. In: Goldscheider N, Drew DP (eds) Methods in Karst Hydrogeology. Taylor & Francis, London, pp 93–121

    Google Scholar 

  • Kloppmann W, Dever L, Edmunds WM (1998) Residence time of chalk groundwaters in the Paris Basin and the North German Basin: a geochemical approach. Appl Geochem 13:593–606

    Article  Google Scholar 

  • Langmuir D (1971) Geochemistry of some carbonate groundwaters in Central Pennsylvania. Geochim Cosmochim Acta 35:1023–1045

    Article  Google Scholar 

  • Lastennet R, Mudry J (1997) Role of rainfall and karstification in the behaviour of a heterogeneous karst system. Environ Geol 32:114–123

    Article  Google Scholar 

  • López-Chicano M, Bouamama M, Vallejos A, Pulido-Bosch A (2001) Factors which determine the hydrochemical behaviour of karst spring. A case study of Betic Cordilleras, Spain. Appl Geochem 16:1179–1192

    Article  Google Scholar 

  • Ma R, Wang Y, Sun Z, Zheng C, Ma T, Prommer H (2011) Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, northern China. Appl Geochem 26:884–897

    Article  Google Scholar 

  • Mangin A (1975) Contribution à l’étude hydrodynamique des aquifers karstiques. Thèse, Univ. Dijon

  • Martín-Algarra A (1987) Evolución geológica Alpina del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Bética (Sector Occidental). Tesis Doctoral Univ, de Granada

    Google Scholar 

  • Moore P, Martin J, Screaton E (2009) Geochemical and statistical evidences of recharge, mixing, and controls on spring discharge in an eogenetic karst system. J Hydrol 376:443–455

    Article  Google Scholar 

  • Moral F, Cruz-Sanjulián J, Olías M (2008) Geochemical evolution of groundwater in the carbonate aquifers of Sierra de Segura (Betic Cordillera, southern Spain). J Hydrol 360:281–296

    Article  Google Scholar 

  • Mudarra M, Andreo B (2011) Relative importance of the saturated and the unsaturated zones in the hydrogeological functioning of karst aquifers. The case of Alta Cadena (southern Spain). J Hydrol 397:263–280

    Article  Google Scholar 

  • Mudry J (1987) Apport du tracage physico—chimique naturel à la connaissance hydrocinématique des aquifères carbonatés. Thèse Sciences Naturelles, Université de Franche-Comté, Besançon

  • Padilla A, Pulido-Bosch A (1995) Study of hydrographs of karst aquifers by means of correlation and cross-spectral analysis. J Hydrol 168:73–89

    Article  Google Scholar 

  • Palmer CD, Cherry JA (1984) Geochemical evolution of groundwater in sequences of sedimentary rocks. J Hydrol 75:27–65

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations. US Geol. Survey, Water Res Investig. 99–4259

  • Perrin J, Jeannin PY, Zwahlen F (2003) Implications of the spatial variability of infiltration-water chemistry for the investigation of a karst aquifer: a field study at Milandre test site, Swiss Jura. Hydrogeol J 11:673–686

    Article  Google Scholar 

  • Plummer L (1977) Defining reactions and mass transfer in part of Floridan aquifer. Water Resour Res 13:801–812

    Article  Google Scholar 

  • Plummer LN, Busby J, Lee R, Hanshaw B (1990) Geochemical modelling of the Madison aquifer in parts of Montana, Wyoming, and south Dakota. Water Resour Res 26:1981–2014

    Article  Google Scholar 

  • Plummer LN, Prestemon EC, Parkhurst DL (1994) An interactive code Netpath for modelling net geochemical reactions along a flow path, version 2.0. U.S. Geological Survey. Water Resources Investigations Report, 94–4169

  • Shuster DI, White WB (1971) Seasonal fluctuations in the chemistry of limestone springs: a possible means from characterizing carbonate aquifers. J Hydrol 14:93–128

    Article  Google Scholar 

  • White WB (1988) Geomorphology and Hydrology of Karst Terrains. Oxford University Press, New York, p 464

    Google Scholar 

  • Wigley T (1973) The incongruent solution of dolomite. Geochim Cosmochim Acta 37:1397–1402

    Article  Google Scholar 

  • Wolery TJ (1992) EQ3NR, a computer program for Geochemical Aqueous Speciation-Solubility Calculations: theoretical manual, user’s guide and related documentation (Version 7.0.). Report UCLR-MA-110662 Pt III. Lawrence Livermore National Laboratory, Livermore, USA

Download references

Acknowledgments

This work is a contribution to the projects P06-RNM 2161 of Junta de Andalucía, CGL2008-06158 BTE and CGL2012-32590 of DGICYT, Integrated Actions HP2008-047 and GE2009-0060, and to the Research Group RNM-308 of the Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Barberá.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barberá, J.A., Andreo, B. & Almeida, C. Using non-conservative tracers to characterise karstification processes in the Merinos-Colorado-Carrasco carbonate aquifer system (southern Spain). Environ Earth Sci 71, 585–599 (2014). https://doi.org/10.1007/s12665-013-2754-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-013-2754-8

Keywords

Navigation