Advertisement

Environmental Earth Sciences

, Volume 71, Issue 8, pp 3559–3570 | Cite as

Dynamics of the Kopački Rit (Croatia) wetland floodplain water regime

  • Lidija TadićEmail author
  • Ognjen Bonacci
  • Tamara Dadić
Original Article

Abstract

Kopački Rit Nature Park is part of the Danube River natural floodplain and one of the last oases of wild life in the Danube River Basin. Due to its extraordinary value, it was inscribed on the list of Wetlands of International Importance in 1993. More than 2,000 species have been registered in this area, which consists of lakes, canals, grassland, marshland and forests. Even the number of investigations which have been performed on its biological and ecological features, hydrological and water resources characteristics, as a prerequisite for ecohydrological analyses, are still rather unknown in the scientific community. Mainly the Danube River and partly the River Drava cause flooding of Kopački Rit and inundations enter the area from both the northern and southern parts. Results of hydrological and meteorological analysis show a decreasing trend of both mean and minimum, annual water levels in the Rivers Drava and Danube (respectively 1.8 and 1.38 cm/year). These reductions in water level can reduce the replenishment periods of Kopački Rit Nature Park. In addition, a significant rise of mean annual air temperature and consequently water temperature (data 1988–2011) may be causing increasing evapotranspiration and loss of water within Kopački Rit. But an encouraging counteracting finding is that, the results of frequency analysis show, even a discharge of 5-years’ return period on the River Danube inundates 70 % of the Danube floodplain and Kopački Rit Nature Park.

Keywords

Wetland Floodplain Water level Water regime Kopački Rit 

References

  1. Altdorff D, Epting J, Kruk J, Dietrich P, Huggenberger P (2013) Delineation of fluvial sediment architecture of subalpine riverine systems using noninvasive hydrogeophysical methods. Environ Earth Sci 69(2):633–644. doi: 10.1007/s12665-013-2304-4 CrossRefGoogle Scholar
  2. Amoros C, Bornette G (2002) Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw Biol 47:517–539CrossRefGoogle Scholar
  3. Azevedo TM, Goncalves MA (2009) Geochemistry of core sediments from the Middle Tagus alluvial plain (Portugal) since the last glacial: using background determination methods to outline environmental changes. Environ Earth Sci 59(1):191–204. doi: 10.1007/s12665-009-0016-6 CrossRefGoogle Scholar
  4. Barišić-Lasović A (2012) Impact of agricultural drainage system on water quality on Kopački Rit. Master Thesis, University of OsijekGoogle Scholar
  5. Bonacci O (2010) Analiza nizova srednjih godišnjih temperatura zraka u Hrvatskoj [Analyses of mean annual air temperature series in Croatia]. Građevinar 62(9):781–791 (Croatian)Google Scholar
  6. Bonacci O, Trninić D, Roje-Bonacci O (2008) Analyses of the water temperature regime of the Danube ant its tributaries in Croatia. Hydrol Process 22(7):1014–1021CrossRefGoogle Scholar
  7. Bridge JS (2003) Rivers and Floodplains—Forms, processes, and sedimentary record. Blackwell Pbl, MaldenGoogle Scholar
  8. Brookes A (1994) River channel change. In: Calow P, Petts GE (eds) The rivers handbook, vol 2. Blackwell Sci Pbl, Oxford, pp 55–75CrossRefGoogle Scholar
  9. Castaldelli G, Colombani N, Vincenzi F (2013) Linking dissolved organic carbon, acetate and denitrification in agricultural soils. Environ Earth Sci 68(4):939–945. doi: 10.1007/s12665-012-1796-7 CrossRefGoogle Scholar
  10. Čerba D, Bogut I, Vidaković J, Palijan G (2009) Invertebrates in Myriophyllum spicatum L. stands in Lake Sakadaš, Croatia. Ekologia—Ecology 28:94–105Google Scholar
  11. Đuroković Z, Brnić-Levada D (1999) Utjecaj izvedenih hidrotehničkih radova na vodne resurse u Kopačkom ritu [Influence of hydrotechnical works on Kopački Rit water resources]. In: Proceedings of 2nd Croatian conference on water, Dubrovnik, pp 661–666 (Croatian)Google Scholar
  12. Elwaseif M, Ismail A, Abdalla M, Abdel-Rahman M, Hafez MA (2012) Geophysical and hydrological investigations at the west bank of Nile River (Luxor, Egypt). Environ Earth Sci 67(3):911–921. doi: 10.1007/s12665-012-1525-2 CrossRefGoogle Scholar
  13. Franz C, Makeschin F, Roig H et al (2012) Sediment characteristics and sedimentations rates of a small river in Western Central Brazil. Environ Earth Sci 65(5):1601–1611. doi: 10.1007/s12665-011-1498-6 CrossRefGoogle Scholar
  14. Garbrecht J, Fernandez GP (1994) Visualization of trends and fluctuations in climatic records. Water Resour Bull 30(2):297–306CrossRefGoogle Scholar
  15. Hein T, Baranyi C, Herndl G, Wanek W, Schiemer F (2003) Allochthonous and autochthonous particulate organic matter in floodplains of the River Danube: the importance of hydrological connectivity. Freshw Biol 48:220–232CrossRefGoogle Scholar
  16. Horvatić J, Peršić V, Mihaljević M (2006) Bioassay method in evaluation of trophic conditions and nutrient limitation in the Danube wetland waters (1388–1426 rkm). Hydrobiologia 563:453–463CrossRefGoogle Scholar
  17. Kent DM (2001) Applied Wetlands Science and Technology, 2nd edn. CRC Press, Boca RatomGoogle Scholar
  18. Lang M, McCarty G, Oesterling R, Yeo L-Y (2012) Topographic metrics for improved mapping of forestry wetlands. Wetlands. doi: 10.1007/s13157-012-0359-8 Google Scholar
  19. Magner J, Hansen B, Sundby T, Kramer G, Wilson B, Nieber J (2012) Channel evolution of Des Moines Lobe till drainage ditches in southern Minnesota (USA). Environ Earth Sci 67(8):2359–2369. doi: 10.1007/s12665-012-1682-3 CrossRefGoogle Scholar
  20. Maričić S (2005) Analyses of one of the rare natural retention in the Middle Danube. In: Proceedings of the Ninth international symposium on water management and hydraulic engineering. Ottenstein, Austria, pp 383–395Google Scholar
  21. Merz C, Winkler A, Pekdeger A (2009) Trace elements in streambed sediments of floodplains: consequences for water management measures. Environ Earth Sci 59(1):25–38. doi: 10.1007/s12665-009-0001-0 CrossRefGoogle Scholar
  22. Mihaljević M et al (1999) Kopački Rit—overview of investigations and bibliography. Croatian academy of science and art, OsijekGoogle Scholar
  23. Mihaljević M, Stević F, Horvatić J, Hackenberger Kutuzović B (2009) Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park. Croatia). Hydrobiologia 618:77–88CrossRefGoogle Scholar
  24. Palijan G, Fuks D (2006) Alteration of factors affecting bacterioplankton abundance in the Danube River floodplain (Kopački Rit. Croatia). Hydrobiologia 560:405–415CrossRefGoogle Scholar
  25. Peršić V, Horvatić J (2011) Spatial distribution of nutrient limitation in the Danube River floodplain in relation to hydrological connectivity. Wetlands 31(5):933–944. doi: 10.1007/s13157-011-0208-1 CrossRefGoogle Scholar
  26. Peršić V, Horvatić J, Mihaljević M (2005) Bioassay method in the trophic evaluation of a wetland area-case study in the Danubian region (1426–1388 rkm). Period Biol 107:293–298Google Scholar
  27. Peršić V, Horvatić J, Has-Schön E, Bogut I (2009) Changes in N and P limitation induced by water level fluctuations in Nature Park Kopački Rit (Croatia): nutrient enrichment bioassay. Aquat Ecol 43:27–36CrossRefGoogle Scholar
  28. Rodrigues ASL, Malafia G, Costa AT, Nalini HA (2013) Evaluation of the mineral exploration influence on sediment composition in the Gualaxo do Norte River Basin (MG-Brazil) based on geochemical and stratigraphic data. Environ Earth Sci 68(4):965–972. doi: 10.1007/s12665-012-1799-4 CrossRefGoogle Scholar
  29. Schwarz U (2006) Genesis and typology of riparian and fluvial landforms of the Kopački Rit within the Danube floodplain corridor in Croatia and Serbia. In: Proceedings 36th international conference of IAD. Austrian Committee Danube Research, Vienna. ISBN 13: 978-3-9500723-2-7, pp 318–321Google Scholar
  30. Singh CK, Satyanarayan S, Singh A, Mukherjee S (2011) Quantitative modeling of groundwater in Satluj River basin of Rupnagar district of Punjab using remote sensing and geographic information system. Environ Earth Sci 62(4):871–881. doi: 10.1007/s12665-010-0574-7 CrossRefGoogle Scholar
  31. Slowik M, Sobczynski T, Mlynarczyk Z (2010) Types of sedimentary environment in alluvial sediments distinguished on the basis of its chemical constitution: the example of the lower course of the Obra river (Western Poland). Environ Earth Sci 59(5):957–966. doi: 10.1007/s12665-009-0089-2 CrossRefGoogle Scholar
  32. Tadić Z, Bonacci O, Radeljak I, Tadić L (2003) Vodni režim Parka prirode Kopački rit [Water regime of Kopački Rit Nature Park]. In: Proceedings of 3rd Croatian conference on water. Osijek, pp 941–950 (Croatian)Google Scholar
  33. Tadić L, Dadić T, Barač B (2013) Flood frequency modelling of Kopački Rit Nature Park. Tehnički vjesnik-Technical Gazzete 20(1):51–57Google Scholar
  34. Thoms MC, Southwell M, McGinness HM (2005) Floodplain-river ecosystems: fragmentation and water resources development. Geomorphology 71:126–138CrossRefGoogle Scholar
  35. Vandeberg GS, Martin CW, Pierzynski GM (2011) Spatial distribution of trace elements in floodplain alluvium of the upper Blackfoot River, Montana. Environ Earth Sci 62(7):1521–1534. doi: 10.1007/s12665-010-0637-9 CrossRefGoogle Scholar
  36. Walling DE, Webb BW (1992) 3: Water quality I. Physical characteristics. In: Calow P, Petts GE (eds) The River Handbook. Blackwell Sci, Oxford, pp 48–72Google Scholar
  37. Zglobicki W, Lata L, Plak A, Reszka M (2011) Geochemical and statistical approach to evaluate background concentrations of Cd, Cu, Pb and Zn (case study: Eastern Poland). Environ Earth Sci 62(2):347–355. doi: 10.1007/s12665-010-0529-z CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Faculty of Civil EngineeringUniversity of OsijekOsijekCroatia
  2. 2.Faculty of Civil Engineering, Architecture and GeodesyUniversity of SplitSplitCroatia

Personalised recommendations